You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

120 lines
3.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import paddle
import numpy as np
from paddle.static import InputSpec
from testing_utils import CommonTest
class _TestModelNamespace:
class TestModel(CommonTest):
MODEL_CLASS = None
DEFAULT_HW = (256, 256)
DEFAULT_BATCH_SIZE = 2
def setUp(self):
self.set_specs()
self.set_inputs()
self.set_targets()
self.set_models()
def test_forward(self):
for i, (
input, model, target
) in enumerate(zip(self.inputs, self.models, self.targets)):
with self.subTest(i=i):
if isinstance(input, list):
output = model(*input)
else:
output = model(input)
self.check_output(output, target)
def test_to_static(self):
for i, (
input, model, target
) in enumerate(zip(self.inputs, self.models, self.targets)):
with self.subTest(i=i):
static_model = paddle.jit.to_static(
model, input_spec=self.get_input_spec(model, input))
def check_output(self, output, target):
pass
def set_specs(self):
self.specs = []
def set_models(self):
self.models = (self.build_model(spec) for spec in self.specs)
def set_inputs(self):
self.inputs = []
def set_targets(self):
self.targets = []
def build_model(self, spec):
if '_phase' in spec:
phase = spec.pop('_phase')
else:
phase = 'train'
if '_stop_grad' in spec:
stop_grad = spec.pop('_stop_grad')
else:
stop_grad = False
model = self.MODEL_CLASS(**spec)
if phase == 'train':
model.train()
elif phase == 'eval':
model.eval()
if stop_grad:
for p in model.parameters():
p.stop_gradient = True
return model
def get_shape(self, c, b=None, h=None, w=None):
if h is None or w is None:
h, w = self.DEFAULT_HW
if b is None:
b = self.DEFAULT_BATCH_SIZE
return (b, c, h, w)
def get_zeros_array(self, c, b=None, h=None, w=None):
shape = self.get_shape(c, b, h, w)
return np.zeros(shape)
def get_randn_tensor(self, c, b=None, h=None, w=None):
shape = self.get_shape(c, b, h, w)
return paddle.randn(shape)
def get_input_spec(self, model, input):
if not isinstance(input, list):
input = [input]
input_spec = []
for param_name, tensor in zip(
inspect.signature(model.forward).parameters, input):
# XXX: Hard-code dtype
input_spec.append(
InputSpec(
shape=tensor.shape, name=param_name, dtype='float32'))
return input_spec
TestModel = _TestModelNamespace.TestModel