You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
442 lines
13 KiB
442 lines
13 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
""" |
|
This code is based on https://github.com/AgentMaker/Paddle-Image-Models |
|
Ths copyright of AgentMaker/Paddle-Image-Models is as follows: |
|
Apache License [see LICENSE for details] |
|
""" |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
__all__ = ["CondenseNetV2_A", "CondenseNetV2_B", "CondenseNetV2_C"] |
|
|
|
|
|
class SELayer(nn.Layer): |
|
def __init__(self, inplanes, reduction=16): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear( |
|
inplanes, inplanes // reduction, bias_attr=False), |
|
nn.ReLU(), |
|
nn.Linear( |
|
inplanes // reduction, inplanes, bias_attr=False), |
|
nn.Sigmoid(), ) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.shape |
|
y = self.avg_pool(x).reshape((b, c)) |
|
y = self.fc(y).reshape((b, c, 1, 1)) |
|
return x * paddle.expand(y, shape=x.shape) |
|
|
|
|
|
class HS(nn.Layer): |
|
def __init__(self): |
|
super(HS, self).__init__() |
|
self.relu6 = nn.ReLU6() |
|
|
|
def forward(self, inputs): |
|
return inputs * self.relu6(inputs + 3) / 6 |
|
|
|
|
|
class Conv(nn.Sequential): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
activation="ReLU", |
|
bn_momentum=0.9, ): |
|
super(Conv, self).__init__() |
|
self.add_sublayer( |
|
"norm", nn.BatchNorm2D( |
|
in_channels, momentum=bn_momentum)) |
|
if activation == "ReLU": |
|
self.add_sublayer("activation", nn.ReLU()) |
|
elif activation == "HS": |
|
self.add_sublayer("activation", HS()) |
|
else: |
|
raise NotImplementedError |
|
self.add_sublayer( |
|
"conv", |
|
nn.Conv2D( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
bias_attr=False, |
|
groups=groups, ), ) |
|
|
|
|
|
def ShuffleLayer(x, groups): |
|
batchsize, num_channels, height, width = x.shape |
|
channels_per_group = num_channels // groups |
|
# Reshape |
|
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
|
# Transpose |
|
x = x.transpose((0, 2, 1, 3, 4)) |
|
# Reshape |
|
x = x.reshape((batchsize, groups * channels_per_group, height, width)) |
|
return x |
|
|
|
|
|
def ShuffleLayerTrans(x, groups): |
|
batchsize, num_channels, height, width = x.shape |
|
channels_per_group = num_channels // groups |
|
# Reshape |
|
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
|
# Transpose |
|
x = x.transpose((0, 2, 1, 3, 4)) |
|
# Reshape |
|
x = x.reshape((batchsize, channels_per_group * groups, height, width)) |
|
return x |
|
|
|
|
|
class CondenseLGC(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
activation="ReLU", ): |
|
super(CondenseLGC, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.groups = groups |
|
self.norm = nn.BatchNorm2D(self.in_channels) |
|
if activation == "ReLU": |
|
self.activation = nn.ReLU() |
|
elif activation == "HS": |
|
self.activation = HS() |
|
else: |
|
raise NotImplementedError |
|
self.conv = nn.Conv2D( |
|
self.in_channels, |
|
self.out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=self.groups, |
|
bias_attr=False, ) |
|
self.register_buffer( |
|
"index", paddle.zeros( |
|
(self.in_channels, ), dtype="int64")) |
|
|
|
def forward(self, x): |
|
x = paddle.index_select(x, self.index, axis=1) |
|
x = self.norm(x) |
|
x = self.activation(x) |
|
x = self.conv(x) |
|
x = ShuffleLayer(x, self.groups) |
|
return x |
|
|
|
|
|
class CondenseSFR(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
activation="ReLU", ): |
|
super(CondenseSFR, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.groups = groups |
|
self.norm = nn.BatchNorm2D(self.in_channels) |
|
if activation == "ReLU": |
|
self.activation = nn.ReLU() |
|
elif activation == "HS": |
|
self.activation = HS() |
|
else: |
|
raise NotImplementedError |
|
self.conv = nn.Conv2D( |
|
self.in_channels, |
|
self.out_channels, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
groups=self.groups, |
|
bias_attr=False, |
|
stride=stride, ) |
|
self.register_buffer("index", |
|
paddle.zeros( |
|
(self.out_channels, self.out_channels))) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = self.activation(x) |
|
x = ShuffleLayerTrans(x, self.groups) |
|
x = self.conv(x) # SIZE: N, C, H, W |
|
N, C, H, W = x.shape |
|
x = x.reshape((N, C, H * W)) |
|
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
|
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
|
x = paddle.matmul(x, self.index) |
|
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW |
|
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW |
|
return x |
|
|
|
|
|
class _SFR_DenseLayer(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
growth_rate, |
|
group_1x1, |
|
group_3x3, |
|
group_trans, |
|
bottleneck, |
|
activation, |
|
use_se=False, ): |
|
super(_SFR_DenseLayer, self).__init__() |
|
self.group_1x1 = group_1x1 |
|
self.group_3x3 = group_3x3 |
|
self.group_trans = group_trans |
|
self.use_se = use_se |
|
# 1x1 conv i --> b*k |
|
self.conv_1 = CondenseLGC( |
|
in_channels, |
|
bottleneck * growth_rate, |
|
kernel_size=1, |
|
groups=self.group_1x1, |
|
activation=activation, ) |
|
# 3x3 conv b*k --> k |
|
self.conv_2 = Conv( |
|
bottleneck * growth_rate, |
|
growth_rate, |
|
kernel_size=3, |
|
padding=1, |
|
groups=self.group_3x3, |
|
activation=activation, ) |
|
# 1x1 res conv k(8-16-32)--> i (k*l) |
|
self.sfr = CondenseSFR( |
|
growth_rate, |
|
in_channels, |
|
kernel_size=1, |
|
groups=self.group_trans, |
|
activation=activation, ) |
|
if self.use_se: |
|
self.se = SELayer(inplanes=growth_rate, reduction=1) |
|
|
|
def forward(self, x): |
|
x_ = x |
|
x = self.conv_1(x) |
|
x = self.conv_2(x) |
|
if self.use_se: |
|
x = self.se(x) |
|
sfr_feature = self.sfr(x) |
|
y = x_ + sfr_feature |
|
return paddle.concat([y, x], 1) |
|
|
|
|
|
class _SFR_DenseBlock(nn.Sequential): |
|
def __init__( |
|
self, |
|
num_layers, |
|
in_channels, |
|
growth_rate, |
|
group_1x1, |
|
group_3x3, |
|
group_trans, |
|
bottleneck, |
|
activation, |
|
use_se, ): |
|
super(_SFR_DenseBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = _SFR_DenseLayer( |
|
in_channels + i * growth_rate, |
|
growth_rate, |
|
group_1x1, |
|
group_3x3, |
|
group_trans, |
|
bottleneck, |
|
activation, |
|
use_se, ) |
|
self.add_sublayer("denselayer_%d" % (i + 1), layer) |
|
|
|
|
|
class _Transition(nn.Layer): |
|
def __init__(self): |
|
super(_Transition, self).__init__() |
|
self.pool = nn.AvgPool2D(kernel_size=2, stride=2) |
|
|
|
def forward(self, x): |
|
x = self.pool(x) |
|
return x |
|
|
|
|
|
class CondenseNetV2(nn.Layer): |
|
def __init__( |
|
self, |
|
stages, |
|
growth, |
|
HS_start_block, |
|
SE_start_block, |
|
fc_channel, |
|
group_1x1, |
|
group_3x3, |
|
group_trans, |
|
bottleneck, |
|
last_se_reduction, |
|
in_channels=3, |
|
class_num=1000, ): |
|
super(CondenseNetV2, self).__init__() |
|
self.stages = stages |
|
self.growth = growth |
|
self.in_channels = in_channels |
|
self.class_num = class_num |
|
self.last_se_reduction = last_se_reduction |
|
assert len(self.stages) == len(self.growth) |
|
self.progress = 0.0 |
|
|
|
self.init_stride = 2 |
|
self.pool_size = 7 |
|
|
|
self.features = nn.Sequential() |
|
# Initial nChannels should be 3 |
|
self.num_features = 2 * self.growth[0] |
|
# Dense-block 1 (224x224) |
|
self.features.add_sublayer( |
|
"init_conv", |
|
nn.Conv2D( |
|
in_channels, |
|
self.num_features, |
|
kernel_size=3, |
|
stride=self.init_stride, |
|
padding=1, |
|
bias_attr=False, ), ) |
|
for i in range(len(self.stages)): |
|
activation = "HS" if i >= HS_start_block else "ReLU" |
|
use_se = True if i >= SE_start_block else False |
|
# Dense-block i |
|
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck, |
|
activation, use_se) |
|
|
|
self.fc = nn.Linear(self.num_features, fc_channel) |
|
self.fc_act = HS() |
|
|
|
# Classifier layer |
|
if class_num > 0: |
|
self.classifier = nn.Linear(fc_channel, class_num) |
|
self._initialize() |
|
|
|
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, |
|
activation, use_se): |
|
# Check if ith is the last one |
|
last = i == len(self.stages) - 1 |
|
block = _SFR_DenseBlock( |
|
num_layers=self.stages[i], |
|
in_channels=self.num_features, |
|
growth_rate=self.growth[i], |
|
group_1x1=group_1x1, |
|
group_3x3=group_3x3, |
|
group_trans=group_trans, |
|
bottleneck=bottleneck, |
|
activation=activation, |
|
use_se=use_se, ) |
|
self.features.add_sublayer("denseblock_%d" % (i + 1), block) |
|
self.num_features += self.stages[i] * self.growth[i] |
|
if not last: |
|
trans = _Transition() |
|
self.features.add_sublayer("transition_%d" % (i + 1), trans) |
|
else: |
|
self.features.add_sublayer("norm_last", |
|
nn.BatchNorm2D(self.num_features)) |
|
self.features.add_sublayer("relu_last", nn.ReLU()) |
|
self.features.add_sublayer("pool_last", |
|
nn.AvgPool2D(self.pool_size)) |
|
# if useSE: |
|
self.features.add_sublayer( |
|
"se_last", |
|
SELayer( |
|
self.num_features, reduction=self.last_se_reduction)) |
|
|
|
def forward(self, x): |
|
features = self.features(x) |
|
out = features.reshape((features.shape[0], features.shape[1] * |
|
features.shape[2] * features.shape[3])) |
|
out = self.fc(out) |
|
out = self.fc_act(out) |
|
|
|
if self.class_num > 0: |
|
out = self.classifier(out) |
|
|
|
return out |
|
|
|
def _initialize(self): |
|
# Initialize |
|
for m in self.sublayers(): |
|
if isinstance(m, nn.Conv2D): |
|
nn.initializer.KaimingNormal()(m.weight) |
|
elif isinstance(m, nn.BatchNorm2D): |
|
nn.initializer.Constant(value=1.0)(m.weight) |
|
nn.initializer.Constant(value=0.0)(m.bias) |
|
|
|
|
|
def CondenseNetV2_A(**kwargs): |
|
model = CondenseNetV2( |
|
stages=[1, 1, 4, 6, 8], |
|
growth=[8, 8, 16, 32, 64], |
|
HS_start_block=2, |
|
SE_start_block=3, |
|
fc_channel=828, |
|
group_1x1=8, |
|
group_3x3=8, |
|
group_trans=8, |
|
bottleneck=4, |
|
last_se_reduction=16, |
|
**kwargs) |
|
return model |
|
|
|
|
|
def CondenseNetV2_B(**kwargs): |
|
model = CondenseNetV2( |
|
stages=[2, 4, 6, 8, 6], |
|
growth=[6, 12, 24, 48, 96], |
|
HS_start_block=2, |
|
SE_start_block=3, |
|
fc_channel=1024, |
|
group_1x1=6, |
|
group_3x3=6, |
|
group_trans=6, |
|
bottleneck=4, |
|
last_se_reduction=16, |
|
**kwargs) |
|
return model |
|
|
|
|
|
def CondenseNetV2_C(**kwargs): |
|
model = CondenseNetV2( |
|
stages=[4, 6, 8, 10, 8], |
|
growth=[8, 16, 32, 64, 128], |
|
HS_start_block=2, |
|
SE_start_block=3, |
|
fc_channel=1024, |
|
group_1x1=8, |
|
group_3x3=8, |
|
group_trans=8, |
|
bottleneck=4, |
|
last_se_reduction=16, |
|
**kwargs) |
|
return model
|
|
|