You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

442 lines
13 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/AgentMaker/Paddle-Image-Models
Ths copyright of AgentMaker/Paddle-Image-Models is as follows:
Apache License [see LICENSE for details]
"""
import paddle
import paddle.nn as nn
__all__ = ["CondenseNetV2_A", "CondenseNetV2_B", "CondenseNetV2_C"]
class SELayer(nn.Layer):
def __init__(self, inplanes, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Linear(
inplanes, inplanes // reduction, bias_attr=False),
nn.ReLU(),
nn.Linear(
inplanes // reduction, inplanes, bias_attr=False),
nn.Sigmoid(), )
def forward(self, x):
b, c, _, _ = x.shape
y = self.avg_pool(x).reshape((b, c))
y = self.fc(y).reshape((b, c, 1, 1))
return x * paddle.expand(y, shape=x.shape)
class HS(nn.Layer):
def __init__(self):
super(HS, self).__init__()
self.relu6 = nn.ReLU6()
def forward(self, inputs):
return inputs * self.relu6(inputs + 3) / 6
class Conv(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU",
bn_momentum=0.9, ):
super(Conv, self).__init__()
self.add_sublayer(
"norm", nn.BatchNorm2D(
in_channels, momentum=bn_momentum))
if activation == "ReLU":
self.add_sublayer("activation", nn.ReLU())
elif activation == "HS":
self.add_sublayer("activation", HS())
else:
raise NotImplementedError
self.add_sublayer(
"conv",
nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias_attr=False,
groups=groups, ), )
def ShuffleLayer(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# Reshape
x = x.reshape((batchsize, groups, channels_per_group, height, width))
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# Reshape
x = x.reshape((batchsize, groups * channels_per_group, height, width))
return x
def ShuffleLayerTrans(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# Reshape
x = x.reshape((batchsize, channels_per_group, groups, height, width))
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# Reshape
x = x.reshape((batchsize, channels_per_group * groups, height, width))
return x
class CondenseLGC(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU", ):
super(CondenseLGC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2D(self.in_channels)
if activation == "ReLU":
self.activation = nn.ReLU()
elif activation == "HS":
self.activation = HS()
else:
raise NotImplementedError
self.conv = nn.Conv2D(
self.in_channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=self.groups,
bias_attr=False, )
self.register_buffer(
"index", paddle.zeros(
(self.in_channels, ), dtype="int64"))
def forward(self, x):
x = paddle.index_select(x, self.index, axis=1)
x = self.norm(x)
x = self.activation(x)
x = self.conv(x)
x = ShuffleLayer(x, self.groups)
return x
class CondenseSFR(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU", ):
super(CondenseSFR, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2D(self.in_channels)
if activation == "ReLU":
self.activation = nn.ReLU()
elif activation == "HS":
self.activation = HS()
else:
raise NotImplementedError
self.conv = nn.Conv2D(
self.in_channels,
self.out_channels,
kernel_size=kernel_size,
padding=padding,
groups=self.groups,
bias_attr=False,
stride=stride, )
self.register_buffer("index",
paddle.zeros(
(self.out_channels, self.out_channels)))
def forward(self, x):
x = self.norm(x)
x = self.activation(x)
x = ShuffleLayerTrans(x, self.groups)
x = self.conv(x) # SIZE: N, C, H, W
N, C, H, W = x.shape
x = x.reshape((N, C, H * W))
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C
x = paddle.matmul(x, self.index)
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW
return x
class _SFR_DenseLayer(nn.Layer):
def __init__(
self,
in_channels,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se=False, ):
super(_SFR_DenseLayer, self).__init__()
self.group_1x1 = group_1x1
self.group_3x3 = group_3x3
self.group_trans = group_trans
self.use_se = use_se
# 1x1 conv i --> b*k
self.conv_1 = CondenseLGC(
in_channels,
bottleneck * growth_rate,
kernel_size=1,
groups=self.group_1x1,
activation=activation, )
# 3x3 conv b*k --> k
self.conv_2 = Conv(
bottleneck * growth_rate,
growth_rate,
kernel_size=3,
padding=1,
groups=self.group_3x3,
activation=activation, )
# 1x1 res conv k(8-16-32)--> i (k*l)
self.sfr = CondenseSFR(
growth_rate,
in_channels,
kernel_size=1,
groups=self.group_trans,
activation=activation, )
if self.use_se:
self.se = SELayer(inplanes=growth_rate, reduction=1)
def forward(self, x):
x_ = x
x = self.conv_1(x)
x = self.conv_2(x)
if self.use_se:
x = self.se(x)
sfr_feature = self.sfr(x)
y = x_ + sfr_feature
return paddle.concat([y, x], 1)
class _SFR_DenseBlock(nn.Sequential):
def __init__(
self,
num_layers,
in_channels,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se, ):
super(_SFR_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _SFR_DenseLayer(
in_channels + i * growth_rate,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se, )
self.add_sublayer("denselayer_%d" % (i + 1), layer)
class _Transition(nn.Layer):
def __init__(self):
super(_Transition, self).__init__()
self.pool = nn.AvgPool2D(kernel_size=2, stride=2)
def forward(self, x):
x = self.pool(x)
return x
class CondenseNetV2(nn.Layer):
def __init__(
self,
stages,
growth,
HS_start_block,
SE_start_block,
fc_channel,
group_1x1,
group_3x3,
group_trans,
bottleneck,
last_se_reduction,
in_channels=3,
class_num=1000, ):
super(CondenseNetV2, self).__init__()
self.stages = stages
self.growth = growth
self.in_channels = in_channels
self.class_num = class_num
self.last_se_reduction = last_se_reduction
assert len(self.stages) == len(self.growth)
self.progress = 0.0
self.init_stride = 2
self.pool_size = 7
self.features = nn.Sequential()
# Initial nChannels should be 3
self.num_features = 2 * self.growth[0]
# Dense-block 1 (224x224)
self.features.add_sublayer(
"init_conv",
nn.Conv2D(
in_channels,
self.num_features,
kernel_size=3,
stride=self.init_stride,
padding=1,
bias_attr=False, ), )
for i in range(len(self.stages)):
activation = "HS" if i >= HS_start_block else "ReLU"
use_se = True if i >= SE_start_block else False
# Dense-block i
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck,
activation, use_se)
self.fc = nn.Linear(self.num_features, fc_channel)
self.fc_act = HS()
# Classifier layer
if class_num > 0:
self.classifier = nn.Linear(fc_channel, class_num)
self._initialize()
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck,
activation, use_se):
# Check if ith is the last one
last = i == len(self.stages) - 1
block = _SFR_DenseBlock(
num_layers=self.stages[i],
in_channels=self.num_features,
growth_rate=self.growth[i],
group_1x1=group_1x1,
group_3x3=group_3x3,
group_trans=group_trans,
bottleneck=bottleneck,
activation=activation,
use_se=use_se, )
self.features.add_sublayer("denseblock_%d" % (i + 1), block)
self.num_features += self.stages[i] * self.growth[i]
if not last:
trans = _Transition()
self.features.add_sublayer("transition_%d" % (i + 1), trans)
else:
self.features.add_sublayer("norm_last",
nn.BatchNorm2D(self.num_features))
self.features.add_sublayer("relu_last", nn.ReLU())
self.features.add_sublayer("pool_last",
nn.AvgPool2D(self.pool_size))
# if useSE:
self.features.add_sublayer(
"se_last",
SELayer(
self.num_features, reduction=self.last_se_reduction))
def forward(self, x):
features = self.features(x)
out = features.reshape((features.shape[0], features.shape[1] *
features.shape[2] * features.shape[3]))
out = self.fc(out)
out = self.fc_act(out)
if self.class_num > 0:
out = self.classifier(out)
return out
def _initialize(self):
# Initialize
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
nn.initializer.KaimingNormal()(m.weight)
elif isinstance(m, nn.BatchNorm2D):
nn.initializer.Constant(value=1.0)(m.weight)
nn.initializer.Constant(value=0.0)(m.bias)
def CondenseNetV2_A(**kwargs):
model = CondenseNetV2(
stages=[1, 1, 4, 6, 8],
growth=[8, 8, 16, 32, 64],
HS_start_block=2,
SE_start_block=3,
fc_channel=828,
group_1x1=8,
group_3x3=8,
group_trans=8,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
def CondenseNetV2_B(**kwargs):
model = CondenseNetV2(
stages=[2, 4, 6, 8, 6],
growth=[6, 12, 24, 48, 96],
HS_start_block=2,
SE_start_block=3,
fc_channel=1024,
group_1x1=6,
group_3x3=6,
group_trans=6,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
def CondenseNetV2_C(**kwargs):
model = CondenseNetV2(
stages=[4, 6, 8, 10, 8],
growth=[8, 16, 32, 64, 128],
HS_start_block=2,
SE_start_block=3,
fc_channel=1024,
group_1x1=8,
group_3x3=8,
group_trans=8,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model