You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

478 lines
16 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .layers import BasicConv, MaxPool2x2, Conv1x1, Conv3x3
bn_mom = 1 - 0.0003
class NLBlock(nn.Layer):
def __init__(self, in_channels):
super(NLBlock, self).__init__()
self.conv_v = BasicConv(
in_ch=in_channels,
out_ch=in_channels,
kernel_size=3,
norm=nn.BatchNorm2D(
in_channels, momentum=0.9))
self.W = BasicConv(
in_ch=in_channels,
out_ch=in_channels,
kernel_size=3,
norm=nn.BatchNorm2D(
in_channels, momentum=0.9),
act=nn.ReLU())
def forward(self, x):
batch_size, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
value = self.conv_v(x)
value = value.reshape([batch_size, c, value.shape[2] * value.shape[3]])
value = value.transpose([0, 2, 1]) # B * (H*W) * value_channels
key = x.reshape([batch_size, c, h * w]) # B * key_channels * (H*W)
query = x.reshape([batch_size, c, h * w])
query = query.transpose([0, 2, 1])
sim_map = paddle.matmul(query, key) # B * (H*W) * (H*W)
sim_map = (c**-.5) * sim_map # B * (H*W) * (H*W)
sim_map = nn.functional.softmax(sim_map, axis=-1) # B * (H*W) * (H*W)
context = paddle.matmul(sim_map, value)
context = context.transpose([0, 2, 1])
context = context.reshape([batch_size, c, *x.shape[2:]])
context = self.W(context)
return context
class NLFPN(nn.Layer):
""" Non-local feature parymid network"""
def __init__(self, in_dim, reduction=True):
super(NLFPN, self).__init__()
if reduction:
self.reduction = BasicConv(
in_ch=in_dim,
out_ch=in_dim // 4,
kernel_size=1,
norm=nn.BatchNorm2D(
in_dim // 4, momentum=bn_mom),
act=nn.ReLU())
self.re_reduction = BasicConv(
in_ch=in_dim // 4,
out_ch=in_dim,
kernel_size=1,
norm=nn.BatchNorm2D(
in_dim, momentum=bn_mom),
act=nn.ReLU())
in_dim = in_dim // 4
else:
self.reduction = None
self.re_reduction = None
self.conv_e1 = BasicConv(
in_dim,
in_dim,
kernel_size=3,
norm=nn.BatchNorm2D(
in_dim, momentum=bn_mom),
act=nn.ReLU())
self.conv_e2 = BasicConv(
in_dim,
in_dim * 2,
kernel_size=3,
norm=nn.BatchNorm2D(
in_dim * 2, momentum=bn_mom),
act=nn.ReLU())
self.conv_e3 = BasicConv(
in_dim * 2,
in_dim * 4,
kernel_size=3,
norm=nn.BatchNorm2D(
in_dim * 4, momentum=bn_mom),
act=nn.ReLU())
self.conv_d1 = BasicConv(
in_dim,
in_dim,
kernel_size=3,
norm=nn.BatchNorm2D(
in_dim, momentum=bn_mom),
act=nn.ReLU())
self.conv_d2 = BasicConv(
in_dim * 2,
in_dim,
kernel_size=3,
norm=nn.BatchNorm2D(
in_dim, momentum=bn_mom),
act=nn.ReLU())
self.conv_d3 = BasicConv(
in_dim * 4,
in_dim * 2,
kernel_size=3,
norm=nn.BatchNorm2D(
in_dim * 2, momentum=bn_mom),
act=nn.ReLU())
self.nl3 = NLBlock(in_dim * 2)
self.nl2 = NLBlock(in_dim)
self.nl1 = NLBlock(in_dim)
self.downsample_x2 = nn.MaxPool2D(stride=2, kernel_size=2)
self.upsample_x2 = nn.UpsamplingBilinear2D(scale_factor=2)
def forward(self, x):
if self.reduction is not None:
x = self.reduction(x)
e1 = self.conv_e1(x) # C,H,W
e2 = self.conv_e2(self.downsample_x2(e1)) # 2C,H/2,W/2
e3 = self.conv_e3(self.downsample_x2(e2)) # 4C,H/4,W/4
d3 = self.conv_d3(e3) # 2C,H/4,W/4
nl = self.nl3(d3)
d3 = self.upsample_x2(paddle.multiply(d3, nl)) ##2C,H/2,W/2
d2 = self.conv_d2(e2 + d3) # C,H/2,W/2
nl = self.nl2(d2)
d2 = self.upsample_x2(paddle.multiply(d2, nl)) # C,H,W
d1 = self.conv_d1(e1 + d2)
nl = self.nl1(d1)
d1 = paddle.multiply(d1, nl) # C,H,W
if self.re_reduction is not None:
d1 = self.re_reduction(d1)
return d1
class Cat(nn.Layer):
def __init__(self, in_chn_high, in_chn_low, out_chn, upsample=False):
super(Cat, self).__init__()
self.do_upsample = upsample
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
self.conv2d = BasicConv(
in_chn_high + in_chn_low,
out_chn,
kernel_size=1,
norm=nn.BatchNorm2D(
out_chn, momentum=bn_mom),
act=nn.ReLU())
def forward(self, x, y):
if self.do_upsample:
x = self.upsample(x)
x = paddle.concat((x, y), 1)
return self.conv2d(x)
class DoubleConv(nn.Layer):
def __init__(self, in_chn, out_chn, stride=1, dilation=1):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2D(
in_chn,
out_chn,
kernel_size=3,
stride=stride,
dilation=dilation,
padding=dilation),
nn.BatchNorm2D(
out_chn, momentum=bn_mom),
nn.ReLU(),
nn.Conv2D(
out_chn, out_chn, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2D(
out_chn, momentum=bn_mom),
nn.ReLU())
def forward(self, x):
x = self.conv(x)
return x
class SEModule(nn.Layer):
def __init__(self, channels, reduction_channels):
super(SEModule, self).__init__()
self.fc1 = nn.Conv2D(
channels,
reduction_channels,
kernel_size=1,
padding=0,
bias_attr=True)
self.ReLU = nn.ReLU()
self.fc2 = nn.Conv2D(
reduction_channels,
channels,
kernel_size=1,
padding=0,
bias_attr=True)
def forward(self, x):
x_se = x.reshape(
[x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).mean(-1).reshape(
[x.shape[0], x.shape[1], 1, 1])
x_se = self.fc1(x_se)
x_se = self.ReLU(x_se)
x_se = self.fc2(x_se)
return x * F.sigmoid(x_se)
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self,
inplanes,
planes,
downsample=None,
use_se=False,
stride=1,
dilation=1):
super(BasicBlock, self).__init__()
first_planes = planes
outplanes = planes * self.expansion
self.conv1 = DoubleConv(inplanes, first_planes)
self.conv2 = DoubleConv(
first_planes, outplanes, stride=stride, dilation=dilation)
self.se = SEModule(outplanes, planes // 4) if use_se else None
self.downsample = MaxPool2x2() if downsample else None
self.ReLU = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
residual = out
out = self.conv2(out)
if self.se is not None:
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(residual)
out = out + residual
out = self.ReLU(out)
return out
class DenseCatAdd(nn.Layer):
def __init__(self, in_chn, out_chn):
super(DenseCatAdd, self).__init__()
self.conv1 = BasicConv(in_chn, in_chn, kernel_size=3, act=nn.ReLU())
self.conv2 = BasicConv(in_chn, in_chn, kernel_size=3, act=nn.ReLU())
self.conv3 = BasicConv(in_chn, in_chn, kernel_size=3, act=nn.ReLU())
self.conv_out = BasicConv(
in_chn,
out_chn,
kernel_size=1,
norm=nn.BatchNorm2D(
out_chn, momentum=bn_mom),
act=nn.ReLU())
def forward(self, x, y):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(x2 + x1)
y1 = self.conv1(y)
y2 = self.conv2(y1)
y3 = self.conv3(y2 + y1)
return self.conv_out(x1 + x2 + x3 + y1 + y2 + y3)
class DenseCatDiff(nn.Layer):
def __init__(self, in_chn, out_chn):
super(DenseCatDiff, self).__init__()
self.conv1 = BasicConv(in_chn, in_chn, kernel_size=3, act=nn.ReLU())
self.conv2 = BasicConv(in_chn, in_chn, kernel_size=3, act=nn.ReLU())
self.conv3 = BasicConv(in_chn, in_chn, kernel_size=3, act=nn.ReLU())
self.conv_out = BasicConv(
in_ch=in_chn,
out_ch=out_chn,
kernel_size=1,
norm=nn.BatchNorm2D(
out_chn, momentum=bn_mom),
act=nn.ReLU())
def forward(self, x, y):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(x2 + x1)
y1 = self.conv1(y)
y2 = self.conv2(y1)
y3 = self.conv3(y2 + y1)
out = self.conv_out(paddle.abs(x1 + x2 + x3 - y1 - y2 - y3))
return out
class DFModule(nn.Layer):
"""Dense connection-based feature fusion module"""
def __init__(self, dim_in, dim_out, reduction=True):
super(DFModule, self).__init__()
if reduction:
self.reduction = Conv1x1(
dim_in,
dim_in // 2,
norm=nn.BatchNorm2D(
dim_in // 2, momentum=bn_mom),
act=nn.ReLU())
dim_in = dim_in // 2
else:
self.reduction = None
self.cat1 = DenseCatAdd(dim_in, dim_out)
self.cat2 = DenseCatDiff(dim_in, dim_out)
self.conv1 = Conv3x3(
dim_out,
dim_out,
norm=nn.BatchNorm2D(
dim_out, momentum=bn_mom),
act=nn.ReLU())
def forward(self, x1, x2):
if self.reduction is not None:
x1 = self.reduction(x1)
x2 = self.reduction(x2)
x_add = self.cat1(x1, x2)
x_diff = self.cat2(x1, x2)
y = self.conv1(x_diff) + x_add
return y
class FCCDN(nn.Layer):
"""
The FCCDN implementation based on PaddlePaddle.
The original article refers to
Pan Chen, et al., "FCCDN: Feature Constraint Network for VHR Image Change Detection"
(https://arxiv.org/pdf/2105.10860.pdf).
Args:
in_channels (int): Number of input channels. Default: 3.
num_classes (int): Number of target classes. Default: 2.
os (int): Number of output stride. Default: 16.
use_se (bool): Whether to use SEModule. Default: True.
"""
def __init__(self, in_channels=3, num_classes=2, os=16, use_se=True):
super(FCCDN, self).__init__()
if os >= 16:
dilation_list = [1, 1, 1, 1]
stride_list = [2, 2, 2, 2]
pool_list = [True, True, True, True]
elif os == 8:
dilation_list = [2, 1, 1, 1]
stride_list = [1, 2, 2, 2]
pool_list = [False, True, True, True]
else:
dilation_list = [2, 2, 1, 1]
stride_list = [1, 1, 2, 2]
pool_list = [False, False, True, True]
se_list = [use_se, use_se, use_se, use_se]
channel_list = [256, 128, 64, 32]
# Encoder
self.block1 = BasicBlock(in_channels, channel_list[3], pool_list[3],
se_list[3], stride_list[3], dilation_list[3])
self.block2 = BasicBlock(channel_list[3], channel_list[2], pool_list[2],
se_list[2], stride_list[2], dilation_list[2])
self.block3 = BasicBlock(channel_list[2], channel_list[1], pool_list[1],
se_list[1], stride_list[1], dilation_list[1])
self.block4 = BasicBlock(channel_list[1], channel_list[0], pool_list[0],
se_list[0], stride_list[0], dilation_list[0])
# Center
self.center = NLFPN(channel_list[0], True)
# Decoder
self.decoder3 = Cat(channel_list[0],
channel_list[1],
channel_list[1],
upsample=pool_list[0])
self.decoder2 = Cat(channel_list[1],
channel_list[2],
channel_list[2],
upsample=pool_list[1])
self.decoder1 = Cat(channel_list[2],
channel_list[3],
channel_list[3],
upsample=pool_list[2])
self.df1 = DFModule(channel_list[3], channel_list[3], True)
self.df2 = DFModule(channel_list[2], channel_list[2], True)
self.df3 = DFModule(channel_list[1], channel_list[1], True)
self.df4 = DFModule(channel_list[0], channel_list[0], True)
self.catc3 = Cat(channel_list[0],
channel_list[1],
channel_list[1],
upsample=pool_list[0])
self.catc2 = Cat(channel_list[1],
channel_list[2],
channel_list[2],
upsample=pool_list[1])
self.catc1 = Cat(channel_list[2],
channel_list[3],
channel_list[3],
upsample=pool_list[2])
self.upsample_x2 = nn.Sequential(
nn.Conv2D(
channel_list[3], 8, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2D(
8, momentum=bn_mom),
nn.ReLU(),
nn.UpsamplingBilinear2D(scale_factor=2))
self.conv_out = nn.Conv2D(
8, num_classes, kernel_size=3, stride=1, padding=1)
self.conv_out_class = nn.Conv2D(
channel_list[3], 1, kernel_size=1, stride=1, padding=0)
def forward(self, t1, t2):
e1_1 = self.block1(t1)
e2_1 = self.block2(e1_1)
e3_1 = self.block3(e2_1)
y1 = self.block4(e3_1)
e1_2 = self.block1(t2)
e2_2 = self.block2(e1_2)
e3_2 = self.block3(e2_2)
y2 = self.block4(e3_2)
y1 = self.center(y1)
y2 = self.center(y2)
c = self.df4(y1, y2)
y1 = self.decoder3(y1, e3_1)
y2 = self.decoder3(y2, e3_2)
c = self.catc3(c, self.df3(y1, y2))
y1 = self.decoder2(y1, e2_1)
y2 = self.decoder2(y2, e2_2)
c = self.catc2(c, self.df2(y1, y2))
y1 = self.decoder1(y1, e1_1)
y2 = self.decoder1(y2, e1_2)
c = self.catc1(c, self.df1(y1, y2))
y = self.conv_out(self.upsample_x2(c))
if self.training:
y1 = self.conv_out_class(y1)
y2 = self.conv_out_class(y2)
return [y, [y1, y2]]
else:
return [y]