You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

629 lines
26 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
from functools import partial
import time
import copy
import math
import yaml
import json
import paddle
from paddle.io import DataLoader, DistributedBatchSampler
from paddleslim import QAT
from paddleslim.analysis import flops
from paddleslim import L1NormFilterPruner, FPGMFilterPruner
import paddlers
from paddlers.transforms import arrange_transforms
from paddlers.utils import (seconds_to_hms, get_single_card_bs, dict2str,
get_pretrain_weights, load_pretrain_weights,
load_checkpoint, SmoothedValue, TrainingStats,
_get_shared_memory_size_in_M, EarlyStop)
import paddlers.utils.logging as logging
from .slim.prune import _pruner_eval_fn, _pruner_template_input, sensitive_prune
from .utils.infer_nets import InferNet
class BaseModel:
def __init__(self, model_type):
self.model_type = model_type
self.num_classes = None
self.labels = None
self.version = paddlers.__version__
self.net = None
self.optimizer = None
self.test_inputs = None
self.train_data_loader = None
self.eval_data_loader = None
self.eval_metrics = None
self.best_accuracy = -1.
self.best_model_epoch = -1
# 是否使用多卡间同步BatchNorm均值和方差
self.sync_bn = False
self.status = 'Normal'
# 已完成迭代轮数,为恢复训练时的起始轮数
self.completed_epochs = 0
self.pruner = None
self.pruning_ratios = None
self.quantizer = None
self.quant_config = None
self.fixed_input_shape = None
def net_initialize(self,
pretrain_weights=None,
save_dir='.',
resume_checkpoint=None,
is_backbone_weights=False):
if pretrain_weights is not None and \
not osp.exists(pretrain_weights):
if not osp.isdir(save_dir):
if osp.exists(save_dir):
os.remove(save_dir)
os.makedirs(save_dir)
if self.model_type == 'classifier':
pretrain_weights = get_pretrain_weights(
pretrain_weights, self.model_name, save_dir)
else:
backbone_name = getattr(self, 'backbone_name', None)
pretrain_weights = get_pretrain_weights(
pretrain_weights,
self.__class__.__name__,
save_dir,
backbone_name=backbone_name)
if pretrain_weights is not None:
if is_backbone_weights:
load_pretrain_weights(
self.net.backbone,
pretrain_weights,
model_name='backbone of ' + self.model_name)
else:
load_pretrain_weights(
self.net, pretrain_weights, model_name=self.model_name)
if resume_checkpoint is not None:
if not osp.exists(resume_checkpoint):
logging.error(
"The checkpoint path {} to resume training from does not exist."
.format(resume_checkpoint),
exit=True)
if not osp.exists(osp.join(resume_checkpoint, 'model.pdparams')):
logging.error(
"Model parameter state dictionary file 'model.pdparams' "
"not found under given checkpoint path {}".format(
resume_checkpoint),
exit=True)
if not osp.exists(osp.join(resume_checkpoint, 'model.pdopt')):
logging.error(
"Optimizer state dictionary file 'model.pdparams' "
"not found under given checkpoint path {}".format(
resume_checkpoint),
exit=True)
if not osp.exists(osp.join(resume_checkpoint, 'model.yml')):
logging.error(
"'model.yml' not found under given checkpoint path {}".
format(resume_checkpoint),
exit=True)
with open(osp.join(resume_checkpoint, "model.yml")) as f:
info = yaml.load(f.read(), Loader=yaml.Loader)
self.completed_epochs = info['completed_epochs']
self.best_accuracy = info['_Attributes']['best_accuracy']
self.best_model_epoch = info['_Attributes']['best_model_epoch']
load_checkpoint(
self.net,
self.optimizer,
model_name=self.model_name,
checkpoint=resume_checkpoint)
def get_model_info(self):
info = dict()
info['version'] = paddlers.__version__
info['Model'] = self.__class__.__name__
info['_Attributes'] = dict(
[('model_type', self.model_type), ('num_classes', self.num_classes),
('labels', self.labels),
('fixed_input_shape', self.fixed_input_shape),
('best_accuracy', self.best_accuracy),
('best_model_epoch', self.best_model_epoch)])
if 'self' in self.init_params:
del self.init_params['self']
if '__class__' in self.init_params:
del self.init_params['__class__']
if 'model_name' in self.init_params:
del self.init_params['model_name']
if 'params' in self.init_params:
del self.init_params['params']
info['_init_params'] = self.init_params
try:
primary_metric_key = list(self.eval_metrics.keys())[0]
primary_metric_value = float(self.eval_metrics[primary_metric_key])
info['_Attributes']['eval_metrics'] = {
primary_metric_key: primary_metric_value
}
except:
pass
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
info['Transforms'] = list()
for op in self.test_transforms.transforms:
name = op.__class__.__name__
if name.startswith('Arrange'):
continue
attr = op.__dict__
info['Transforms'].append({name: attr})
info['completed_epochs'] = self.completed_epochs
return info
def get_pruning_info(self):
info = dict()
info['pruner'] = self.pruner.__class__.__name__
info['pruning_ratios'] = self.pruning_ratios
pruner_inputs = self.pruner.inputs
if self.model_type == 'detector':
pruner_inputs = {k: v.tolist() for k, v in pruner_inputs[0].items()}
info['pruner_inputs'] = pruner_inputs
return info
def get_quant_info(self):
info = dict()
info['quant_config'] = self.quant_config
return info
def save_model(self, save_dir):
if not osp.isdir(save_dir):
if osp.exists(save_dir):
os.remove(save_dir)
os.makedirs(save_dir)
model_info = self.get_model_info()
model_info['status'] = self.status
paddle.save(self.net.state_dict(), osp.join(save_dir, 'model.pdparams'))
paddle.save(self.optimizer.state_dict(),
osp.join(save_dir, 'model.pdopt'))
with open(
osp.join(save_dir, 'model.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(model_info, f)
# 评估结果保存
if hasattr(self, 'eval_details'):
with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
json.dump(self.eval_details, f)
if self.status == 'Pruned' and self.pruner is not None:
pruning_info = self.get_pruning_info()
with open(
osp.join(save_dir, 'prune.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(pruning_info, f)
if self.status == 'Quantized' and self.quantizer is not None:
quant_info = self.get_quant_info()
with open(
osp.join(save_dir, 'quant.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(quant_info, f)
# 模型保存成功的标志
open(osp.join(save_dir, '.success'), 'w').close()
logging.info("Model saved in {}.".format(save_dir))
def build_data_loader(self, dataset, batch_size, mode='train'):
if dataset.num_samples < batch_size:
raise Exception(
'The volume of dataset({}) must be larger than batch size({}).'
.format(dataset.num_samples, batch_size))
batch_size_each_card = get_single_card_bs(batch_size=batch_size)
# TODO detection eval阶段需做判断
batch_sampler = DistributedBatchSampler(
dataset,
batch_size=batch_size_each_card,
shuffle=dataset.shuffle,
drop_last=mode == 'train')
if dataset.num_workers > 0:
shm_size = _get_shared_memory_size_in_M()
if shm_size is None or shm_size < 1024.:
use_shared_memory = False
else:
use_shared_memory = True
else:
use_shared_memory = False
loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=dataset.batch_transforms,
num_workers=dataset.num_workers,
return_list=True,
use_shared_memory=use_shared_memory)
return loader
def train_loop(self,
num_epochs,
train_dataset,
train_batch_size,
eval_dataset=None,
save_interval_epochs=1,
log_interval_steps=10,
save_dir='output',
ema=None,
early_stop=False,
early_stop_patience=5,
use_vdl=True):
arrange_transforms(
model_type=self.model_type,
transforms=train_dataset.transforms,
mode='train')
if "RCNN" in self.__class__.__name__ and train_dataset.pos_num < len(
train_dataset.file_list):
nranks = 1
else:
nranks = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
if nranks > 1:
find_unused_parameters = getattr(self, 'find_unused_parameters',
False)
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
):
paddle.distributed.init_parallel_env()
ddp_net = paddle.DataParallel(
self.net, find_unused_parameters=find_unused_parameters)
else:
ddp_net = paddle.DataParallel(
self.net, find_unused_parameters=find_unused_parameters)
if use_vdl:
from visualdl import LogWriter
vdl_logdir = osp.join(save_dir, 'vdl_log')
log_writer = LogWriter(vdl_logdir)
# task_id: refer to paddlers
task_id = getattr(paddlers, "task_id", "")
thresh = .0001
if early_stop:
earlystop = EarlyStop(early_stop_patience, thresh)
self.train_data_loader = self.build_data_loader(
train_dataset, batch_size=train_batch_size, mode='train')
if eval_dataset is not None:
self.test_transforms = copy.deepcopy(eval_dataset.transforms)
start_epoch = self.completed_epochs
train_step_time = SmoothedValue(log_interval_steps)
train_step_each_epoch = math.floor(train_dataset.num_samples /
train_batch_size)
train_total_step = train_step_each_epoch * (num_epochs - start_epoch)
if eval_dataset is not None:
eval_batch_size = train_batch_size
eval_epoch_time = 0
current_step = 0
for i in range(start_epoch, num_epochs):
self.net.train()
if callable(
getattr(self.train_data_loader.dataset, 'set_epoch', None)):
self.train_data_loader.dataset.set_epoch(i)
train_avg_metrics = TrainingStats()
step_time_tic = time.time()
for step, data in enumerate(self.train_data_loader()):
if nranks > 1:
outputs = self.run(ddp_net, data, mode='train')
else:
outputs = self.run(self.net, data, mode='train')
loss = outputs['loss']
loss.backward()
self.optimizer.step()
self.optimizer.clear_grad()
lr = self.optimizer.get_lr()
if isinstance(self.optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.optimizer._learning_rate.step()
train_avg_metrics.update(outputs)
outputs['lr'] = lr
if ema is not None:
ema.update(self.net)
step_time_toc = time.time()
train_step_time.update(step_time_toc - step_time_tic)
step_time_tic = step_time_toc
current_step += 1
# 每间隔log_interval_steps,输出loss信息
if current_step % log_interval_steps == 0 and local_rank == 0:
if use_vdl:
for k, v in outputs.items():
log_writer.add_scalar(
'{}-Metrics/Training(Step): {}'.format(
task_id, k), v, current_step)
# 估算剩余时间
avg_step_time = train_step_time.avg()
eta = avg_step_time * (train_total_step - current_step)
if eval_dataset is not None:
eval_num_epochs = math.ceil(
(num_epochs - i - 1) / save_interval_epochs)
if eval_epoch_time == 0:
eta += avg_step_time * math.ceil(
eval_dataset.num_samples / eval_batch_size)
else:
eta += eval_epoch_time * eval_num_epochs
logging.info(
"[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
.format(i + 1, num_epochs, step + 1,
train_step_each_epoch,
dict2str(outputs),
round(avg_step_time, 2), seconds_to_hms(eta)))
logging.info('[TRAIN] Epoch {} finished, {} .'
.format(i + 1, train_avg_metrics.log()))
self.completed_epochs += 1
if ema is not None:
weight = copy.deepcopy(self.net.state_dict())
self.net.set_state_dict(ema.apply())
eval_epoch_tic = time.time()
# 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
if eval_dataset is not None and eval_dataset.num_samples > 0:
eval_result = self.evaluate(
eval_dataset,
batch_size=eval_batch_size,
return_details=True)
# 保存最优模型
if local_rank == 0:
self.eval_metrics, self.eval_details = eval_result
if use_vdl:
for k, v in self.eval_metrics.items():
try:
log_writer.add_scalar(
'{}-Metrics/Eval(Epoch): {}'.format(
task_id, k), v, i + 1)
except TypeError:
pass
logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
i + 1, dict2str(self.eval_metrics)))
best_accuracy_key = list(self.eval_metrics.keys())[0]
current_accuracy = self.eval_metrics[best_accuracy_key]
if current_accuracy > self.best_accuracy:
self.best_accuracy = current_accuracy
self.best_model_epoch = i + 1
best_model_dir = osp.join(save_dir, "best_model")
self.save_model(save_dir=best_model_dir)
if self.best_model_epoch > 0:
logging.info(
'Current evaluated best model on eval_dataset is epoch_{}, {}={}'
.format(self.best_model_epoch,
best_accuracy_key, self.best_accuracy))
eval_epoch_time = time.time() - eval_epoch_tic
current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
if local_rank == 0:
self.save_model(save_dir=current_save_dir)
if eval_dataset is not None and early_stop:
if earlystop(current_accuracy):
break
if ema is not None:
self.net.set_state_dict(weight)
def analyze_sensitivity(self,
dataset,
batch_size=8,
criterion='l1_norm',
save_dir='output'):
"""
Args:
dataset(paddlers.dataset): Dataset used for evaluation during sensitivity analysis.
batch_size(int, optional): Batch size used in evaluation. Defaults to 8.
criterion({'l1_norm', 'fpgm'}, optional): Pruning criterion. Defaults to 'l1_norm'.
save_dir(str, optional): The directory to save sensitivity file of the model. Defaults to 'output'.
"""
if self.__class__.__name__ in {'FasterRCNN', 'MaskRCNN', 'PicoDet'}:
raise Exception("{} does not support pruning currently!".format(
self.__class__.__name__))
assert criterion in {'l1_norm', 'fpgm'}, \
"Pruning criterion {} is not supported. Please choose from ['l1_norm', 'fpgm']"
arrange_transforms(
model_type=self.model_type,
transforms=dataset.transforms,
mode='eval')
if self.model_type == 'detector':
self.net.eval()
else:
self.net.train()
inputs = _pruner_template_input(
sample=dataset[0], model_type=self.model_type)
if criterion == 'l1_norm':
self.pruner = L1NormFilterPruner(self.net, inputs=inputs)
else:
self.pruner = FPGMFilterPruner(self.net, inputs=inputs)
if not osp.isdir(save_dir):
os.makedirs(save_dir)
sen_file = osp.join(save_dir, 'model.sensi.data')
logging.info('Sensitivity analysis of model parameters starts...')
self.pruner.sensitive(
eval_func=partial(_pruner_eval_fn, self, dataset, batch_size),
sen_file=sen_file)
logging.info(
'Sensitivity analysis is complete. The result is saved at {}.'.
format(sen_file))
def prune(self, pruned_flops, save_dir=None):
"""
Args:
pruned_flops(float): Ratio of FLOPs to be pruned.
save_dir(None or str, optional): If None, the pruned model will not be saved.
Otherwise, the pruned model will be saved at save_dir. Defaults to None.
"""
if self.status == "Pruned":
raise Exception(
"A pruned model cannot be done model pruning again!")
pre_pruning_flops = flops(self.net, self.pruner.inputs)
logging.info("Pre-pruning FLOPs: {}. Pruning starts...".format(
pre_pruning_flops))
_, self.pruning_ratios = sensitive_prune(self.pruner, pruned_flops)
post_pruning_flops = flops(self.net, self.pruner.inputs)
logging.info("Pruning is complete. Post-pruning FLOPs: {}".format(
post_pruning_flops))
logging.warning("Pruning the model may hurt its performance, "
"retraining is highly recommended")
self.status = 'Pruned'
if save_dir is not None:
self.save_model(save_dir)
logging.info("Pruned model is saved at {}".format(save_dir))
def _prepare_qat(self, quant_config):
if self.status == 'Infer':
logging.error(
"Exported inference model does not support quantization aware training.",
exit=True)
if quant_config is None:
# default quantization configuration
quant_config = {
# {None, 'PACT'}. Weight preprocess type. If None, no preprocessing is performed.
'weight_preprocess_type': None,
# {None, 'PACT'}. Activation preprocess type. If None, no preprocessing is performed.
'activation_preprocess_type': None,
# {'abs_max', 'channel_wise_abs_max', 'range_abs_max', 'moving_average_abs_max'}.
# Weight quantization type.
'weight_quantize_type': 'channel_wise_abs_max',
# {'abs_max', 'range_abs_max', 'moving_average_abs_max'}. Activation quantization type.
'activation_quantize_type': 'moving_average_abs_max',
# The number of bits of weights after quantization.
'weight_bits': 8,
# The number of bits of activation after quantization.
'activation_bits': 8,
# Data type after quantization, such as 'uint8', 'int8', etc.
'dtype': 'int8',
# Window size for 'range_abs_max' quantization.
'window_size': 10000,
# Decay coefficient of moving average.
'moving_rate': .9,
# Types of layers that will be quantized.
'quantizable_layer_type': ['Conv2D', 'Linear']
}
if self.status != 'Quantized':
self.quant_config = quant_config
self.quantizer = QAT(config=self.quant_config)
logging.info(
"Preparing the model for quantization-aware training...")
self.quantizer.quantize(self.net)
logging.info("Model is ready for quantization-aware training.")
self.status = 'Quantized'
elif quant_config != self.quant_config:
logging.error(
"The model has been quantized with the following quant_config: {}."
"Doing quantization-aware training with a quantized model "
"using a different configuration is not supported."
.format(self.quant_config),
exit=True)
def _get_pipeline_info(self, save_dir):
pipeline_info = {}
pipeline_info["pipeline_name"] = self.model_type
nodes = [{
"src0": {
"type": "Source",
"next": "decode0"
}
}, {
"decode0": {
"type": "Decode",
"next": "predict0"
}
}, {
"predict0": {
"type": "Predict",
"init_params": {
"use_gpu": False,
"gpu_id": 0,
"use_trt": False,
"model_dir": save_dir,
},
"next": "sink0"
}
}, {
"sink0": {
"type": "Sink"
}
}]
pipeline_info["pipeline_nodes"] = nodes
pipeline_info["version"] = "1.0.0"
return pipeline_info
def _build_inference_net(self):
infer_net = self.net if self.model_type == 'detector' else InferNet(
self.net, self.model_type)
infer_net.eval()
return infer_net
def _export_inference_model(self, save_dir, image_shape=None):
save_dir = osp.join(save_dir, 'inference_model')
self.test_inputs = self._get_test_inputs(image_shape)
infer_net = self._build_inference_net()
if self.status == 'Quantized':
self.quantizer.save_quantized_model(infer_net,
osp.join(save_dir, 'model'),
self.test_inputs)
quant_info = self.get_quant_info()
with open(
osp.join(save_dir, 'quant.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(quant_info, f)
else:
static_net = paddle.jit.to_static(
infer_net, input_spec=self.test_inputs)
paddle.jit.save(static_net, osp.join(save_dir, 'model'))
if self.status == 'Pruned':
pruning_info = self.get_pruning_info()
with open(
osp.join(save_dir, 'prune.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(pruning_info, f)
model_info = self.get_model_info()
model_info['status'] = 'Infer'
with open(
osp.join(save_dir, 'model.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(model_info, f)
pipeline_info = self._get_pipeline_info(save_dir)
with open(
osp.join(save_dir, 'pipeline.yml'), encoding='utf-8',
mode='w') as f:
yaml.dump(pipeline_info, f)
# 模型保存成功的标志
open(osp.join(save_dir, '.success'), 'w').close()
logging.info("The model for the inference deployment is saved in {}.".
format(save_dir))