You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

175 lines
6.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import filelock
import os
import tempfile
import numpy as np
import random
from urllib.parse import urlparse, unquote
import paddle
from paddlers.models.ppseg.utils import logger, seg_env
from paddlers.models.ppseg.utils.download import download_file_and_uncompress
@contextlib.contextmanager
def generate_tempdir(directory: str = None, **kwargs):
'''Generate a temporary directory'''
directory = seg_env.TMP_HOME if not directory else directory
with tempfile.TemporaryDirectory(dir=directory, **kwargs) as _dir:
yield _dir
def load_entire_model(model, pretrained):
if pretrained is not None:
load_pretrained_model(model, pretrained)
else:
logger.warning('Not all pretrained params of {} are loaded, ' \
'training from scratch or a pretrained backbone.'.format(model.__class__.__name__))
def download_pretrained_model(pretrained_model):
"""
Download pretrained model from url.
Args:
pretrained_model (str): the url of pretrained weight
Returns:
str: the path of pretrained weight
"""
assert urlparse(pretrained_model).netloc, "The url is not valid."
pretrained_model = unquote(pretrained_model)
savename = pretrained_model.split('/')[-1]
if not savename.endswith(('tgz', 'tar.gz', 'tar', 'zip')):
savename = pretrained_model.split('/')[-2]
else:
savename = savename.split('.')[0]
with generate_tempdir() as _dir:
with filelock.FileLock(os.path.join(seg_env.TMP_HOME, savename)):
pretrained_model = download_file_and_uncompress(
pretrained_model,
savepath=_dir,
extrapath=seg_env.PRETRAINED_MODEL_HOME,
extraname=savename)
pretrained_model = os.path.join(pretrained_model, 'model.pdparams')
return pretrained_model
def load_pretrained_model(model, pretrained_model):
if pretrained_model is not None:
logger.info('Loading pretrained model from {}'.format(pretrained_model))
if urlparse(pretrained_model).netloc:
pretrained_model = download_pretrained_model(pretrained_model)
if os.path.exists(pretrained_model):
para_state_dict = paddle.load(pretrained_model)
model_state_dict = model.state_dict()
keys = model_state_dict.keys()
num_params_loaded = 0
for k in keys:
if k not in para_state_dict:
logger.warning("{} is not in pretrained model".format(k))
elif list(para_state_dict[k].shape) != list(
model_state_dict[k].shape):
logger.warning(
"[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
.format(k, para_state_dict[k].shape,
model_state_dict[k].shape))
else:
model_state_dict[k] = para_state_dict[k]
num_params_loaded += 1
model.set_dict(model_state_dict)
logger.info("There are {}/{} variables loaded into {}.".format(
num_params_loaded, len(model_state_dict),
model.__class__.__name__))
else:
raise ValueError(
'The pretrained model directory is not Found: {}'.format(
pretrained_model))
else:
logger.info(
'No pretrained model to load, {} will be trained from scratch.'.
format(model.__class__.__name__))
def resume(model, optimizer, resume_model):
if resume_model is not None:
logger.info('Resume model from {}'.format(resume_model))
if os.path.exists(resume_model):
resume_model = os.path.normpath(resume_model)
ckpt_path = os.path.join(resume_model, 'model.pdparams')
para_state_dict = paddle.load(ckpt_path)
ckpt_path = os.path.join(resume_model, 'model.pdopt')
opti_state_dict = paddle.load(ckpt_path)
model.set_state_dict(para_state_dict)
optimizer.set_state_dict(opti_state_dict)
iter = resume_model.split('_')[-1]
iter = int(iter)
return iter
else:
raise ValueError(
'Directory of the model needed to resume is not Found: {}'.
format(resume_model))
else:
logger.info('No model needed to resume.')
def worker_init_fn(worker_id):
np.random.seed(random.randint(0, 100000))
def get_image_list(image_path):
"""Get image list"""
valid_suffix = [
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
]
image_list = []
image_dir = None
if os.path.isfile(image_path):
if os.path.splitext(image_path)[-1] in valid_suffix:
image_list.append(image_path)
else:
image_dir = os.path.dirname(image_path)
with open(image_path, 'r') as f:
for line in f:
line = line.strip()
if len(line.split()) > 1:
line = line.split()[0]
image_list.append(os.path.join(image_dir, line))
elif os.path.isdir(image_path):
image_dir = image_path
for root, dirs, files in os.walk(image_path):
for f in files:
if '.ipynb_checkpoints' in root:
continue
if os.path.splitext(f)[-1] in valid_suffix:
image_list.append(os.path.join(root, f))
else:
raise FileNotFoundError(
'`--image_path` is not found. it should be a path of image, or a file list containing image paths, or a directory including images.'
)
if len(image_list) == 0:
raise RuntimeError(
'There are not image file in `--image_path`={}'.format(image_path))
return image_list, image_dir