You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
6.9 KiB
210 lines
6.9 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import numpy as np |
|
import paddle |
|
import paddle.nn.functional as F |
|
import sklearn.metrics as skmetrics |
|
|
|
|
|
def calculate_area(pred, label, num_classes, ignore_index=255): |
|
""" |
|
Calculate intersect, prediction and label area |
|
|
|
Args: |
|
pred (Tensor): The prediction by model. |
|
label (Tensor): The ground truth of image. |
|
num_classes (int): The unique number of target classes. |
|
ignore_index (int): Specifies a target value that is ignored. Default: 255. |
|
|
|
Returns: |
|
Tensor: The intersection area of prediction and the ground on all class. |
|
Tensor: The prediction area on all class. |
|
Tensor: The ground truth area on all class |
|
""" |
|
if len(pred.shape) == 4: |
|
pred = paddle.squeeze(pred, axis=1) |
|
if len(label.shape) == 4: |
|
label = paddle.squeeze(label, axis=1) |
|
if not pred.shape == label.shape: |
|
raise ValueError('Shape of `pred` and `label should be equal, ' |
|
'but there are {} and {}.'.format( |
|
pred.shape, label.shape)) |
|
pred_area = [] |
|
label_area = [] |
|
intersect_area = [] |
|
mask = label != ignore_index |
|
|
|
for i in range(num_classes): |
|
pred_i = paddle.logical_and(pred == i, mask) |
|
label_i = label == i |
|
intersect_i = paddle.logical_and(pred_i, label_i) |
|
pred_area.append(paddle.sum(paddle.cast(pred_i, "int32"))) |
|
label_area.append(paddle.sum(paddle.cast(label_i, "int32"))) |
|
intersect_area.append(paddle.sum(paddle.cast(intersect_i, "int32"))) |
|
|
|
pred_area = paddle.concat(pred_area) |
|
label_area = paddle.concat(label_area) |
|
intersect_area = paddle.concat(intersect_area) |
|
|
|
return intersect_area, pred_area, label_area |
|
|
|
|
|
def auc_roc(logits, label, num_classes, ignore_index=None): |
|
""" |
|
Calculate area under the roc curve |
|
|
|
Args: |
|
logits (Tensor): The prediction by model on testset, of shape (N,C,H,W) . |
|
label (Tensor): The ground truth of image. (N,1,H,W) |
|
num_classes (int): The unique number of target classes. |
|
ignore_index (int): Specifies a target value that is ignored. Default: 255. |
|
|
|
Returns: |
|
auc_roc(float): The area under roc curve |
|
""" |
|
if ignore_index or len(np.unique(label)) > num_classes: |
|
raise RuntimeError('labels with ignore_index is not supported yet.') |
|
|
|
if len(label.shape) != 4: |
|
raise ValueError( |
|
'The shape of label is not 4 dimension as (N, C, H, W), it is {}'. |
|
format(label.shape)) |
|
|
|
if len(logits.shape) != 4: |
|
raise ValueError( |
|
'The shape of logits is not 4 dimension as (N, C, H, W), it is {}'. |
|
format(logits.shape)) |
|
|
|
N, C, H, W = logits.shape |
|
logits = np.transpose(logits, (1, 0, 2, 3)) |
|
logits = logits.reshape([C, N * H * W]).transpose([1, 0]) |
|
|
|
label = np.transpose(label, (1, 0, 2, 3)) |
|
label = label.reshape([1, N * H * W]).squeeze() |
|
|
|
if not logits.shape[0] == label.shape[0]: |
|
raise ValueError('length of `logit` and `label` should be equal, ' |
|
'but they are {} and {}.'.format( |
|
logits.shape[0], label.shape[0])) |
|
|
|
if num_classes == 2: |
|
auc = skmetrics.roc_auc_score(label, logits[:, 1]) |
|
else: |
|
auc = skmetrics.roc_auc_score(label, logits, multi_class='ovr') |
|
|
|
return auc |
|
|
|
|
|
def mean_iou(intersect_area, pred_area, label_area): |
|
""" |
|
Calculate iou. |
|
|
|
Args: |
|
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. |
|
pred_area (Tensor): The prediction area on all classes. |
|
label_area (Tensor): The ground truth area on all classes. |
|
|
|
Returns: |
|
np.ndarray: iou on all classes. |
|
float: mean iou of all classes. |
|
""" |
|
intersect_area = intersect_area.numpy() |
|
pred_area = pred_area.numpy() |
|
label_area = label_area.numpy() |
|
union = pred_area + label_area - intersect_area |
|
class_iou = [] |
|
for i in range(len(intersect_area)): |
|
if union[i] == 0: |
|
iou = 0 |
|
else: |
|
iou = intersect_area[i] / union[i] |
|
class_iou.append(iou) |
|
miou = np.mean(class_iou) |
|
return np.array(class_iou), miou |
|
|
|
|
|
def dice(intersect_area, pred_area, label_area): |
|
""" |
|
Calculate DICE. |
|
|
|
Args: |
|
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. |
|
pred_area (Tensor): The prediction area on all classes. |
|
label_area (Tensor): The ground truth area on all classes. |
|
|
|
Returns: |
|
np.ndarray: DICE on all classes. |
|
float: mean DICE of all classes. |
|
""" |
|
intersect_area = intersect_area.numpy() |
|
pred_area = pred_area.numpy() |
|
label_area = label_area.numpy() |
|
union = pred_area + label_area |
|
class_dice = [] |
|
for i in range(len(intersect_area)): |
|
if union[i] == 0: |
|
dice = 0 |
|
else: |
|
dice = (2 * intersect_area[i]) / union[i] |
|
class_dice.append(dice) |
|
mdice = np.mean(class_dice) |
|
return np.array(class_dice), mdice |
|
|
|
|
|
def accuracy(intersect_area, pred_area): |
|
""" |
|
Calculate accuracy |
|
|
|
Args: |
|
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.. |
|
pred_area (Tensor): The prediction area on all classes. |
|
|
|
Returns: |
|
np.ndarray: accuracy on all classes. |
|
float: mean accuracy. |
|
""" |
|
intersect_area = intersect_area.numpy() |
|
pred_area = pred_area.numpy() |
|
class_acc = [] |
|
for i in range(len(intersect_area)): |
|
if pred_area[i] == 0: |
|
acc = 0 |
|
else: |
|
acc = intersect_area[i] / pred_area[i] |
|
class_acc.append(acc) |
|
macc = np.sum(intersect_area) / np.sum(pred_area) |
|
return np.array(class_acc), macc |
|
|
|
|
|
def kappa(intersect_area, pred_area, label_area): |
|
""" |
|
Calculate kappa coefficient |
|
|
|
Args: |
|
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.. |
|
pred_area (Tensor): The prediction area on all classes. |
|
label_area (Tensor): The ground truth area on all classes. |
|
|
|
Returns: |
|
float: kappa coefficient. |
|
""" |
|
intersect_area = intersect_area.numpy() |
|
pred_area = pred_area.numpy() |
|
label_area = label_area.numpy() |
|
total_area = np.sum(label_area) |
|
po = np.sum(intersect_area) / total_area |
|
pe = np.sum(pred_area * label_area) / (total_area * total_area) |
|
kappa = (po - pe) / (1 - pe) |
|
return kappa
|
|
|