You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

122 lines
4.0 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import platform
import subprocess
import sys
import cv2
import paddle
IS_WINDOWS = sys.platform == 'win32'
def _find_cuda_home():
'''Finds the CUDA install path. It refers to the implementation of
pytorch <https://github.com/pytorch/pytorch/blob/master/torch/utils/cpp_extension.py>.
'''
# Guess #1
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home is None:
# Guess #2
try:
which = 'where' if IS_WINDOWS else 'which'
nvcc = subprocess.check_output([which,
'nvcc']).decode().rstrip('\r\n')
cuda_home = os.path.dirname(os.path.dirname(nvcc))
except Exception:
# Guess #3
if IS_WINDOWS:
cuda_homes = glob.glob(
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
if len(cuda_homes) == 0:
cuda_home = ''
else:
cuda_home = cuda_homes[0]
else:
cuda_home = '/usr/local/cuda'
if not os.path.exists(cuda_home):
cuda_home = None
return cuda_home
def _get_nvcc_info(cuda_home):
if cuda_home is not None and os.path.isdir(cuda_home):
try:
nvcc = os.path.join(cuda_home, 'bin/nvcc')
nvcc = subprocess.check_output(
"{} -V".format(nvcc), shell=True).decode()
nvcc = nvcc.strip().split('\n')[-1]
except subprocess.SubprocessError:
nvcc = "Not Available"
else:
nvcc = "Not Available"
return nvcc
def _get_gpu_info():
try:
gpu_info = subprocess.check_output(['nvidia-smi',
'-L']).decode().strip()
gpu_info = gpu_info.split('\n')
for i in range(len(gpu_info)):
gpu_info[i] = ' '.join(gpu_info[i].split(' ')[:4])
except:
gpu_info = ' Can not get GPU information. Please make sure CUDA have been installed successfully.'
return gpu_info
def get_sys_env():
"""collect environment information"""
env_info = {}
env_info['platform'] = platform.platform()
env_info['Python'] = sys.version.replace('\n', '')
# TODO is_compiled_with_cuda() has not been moved
compiled_with_cuda = paddle.is_compiled_with_cuda()
env_info['Paddle compiled with cuda'] = compiled_with_cuda
if compiled_with_cuda:
cuda_home = _find_cuda_home()
env_info['NVCC'] = _get_nvcc_info(cuda_home)
# refer to https://github.com/PaddlePaddle/Paddle/blob/release/2.0-rc/paddle/fluid/platform/device_context.cc#L327
v = paddle.get_cudnn_version()
v = str(v // 1000) + '.' + str(v % 1000 // 100)
env_info['cudnn'] = v
if 'gpu' in paddle.get_device():
gpu_nums = paddle.distributed.ParallelEnv().nranks
else:
gpu_nums = 0
env_info['GPUs used'] = gpu_nums
env_info['CUDA_VISIBLE_DEVICES'] = os.environ.get(
'CUDA_VISIBLE_DEVICES')
if gpu_nums == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
env_info['GPU'] = _get_gpu_info()
try:
gcc = subprocess.check_output(['gcc', '--version']).decode()
gcc = gcc.strip().split('\n')[0]
env_info['GCC'] = gcc
except:
pass
env_info['PaddlePaddle'] = paddle.__version__
env_info['OpenCV'] = cv2.__version__
return env_info