You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
6.4 KiB
162 lines
6.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
|
|
import paddle |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from paddlers.models.ppseg.cvlibs import manager |
|
from paddlers.models.ppseg.transforms import Compose |
|
import paddlers.models.ppseg.transforms.functional as F |
|
|
|
|
|
@manager.DATASETS.add_component |
|
class Dataset(paddle.io.Dataset): |
|
""" |
|
Pass in a custom dataset that conforms to the format. |
|
|
|
Args: |
|
transforms (list): Transforms for image. |
|
dataset_root (str): The dataset directory. |
|
num_classes (int): Number of classes. |
|
mode (str, optional): which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. |
|
train_path (str, optional): The train dataset file. When mode is 'train', train_path is necessary. |
|
The contents of train_path file are as follow: |
|
image1.jpg ground_truth1.png |
|
image2.jpg ground_truth2.png |
|
val_path (str. optional): The evaluation dataset file. When mode is 'val', val_path is necessary. |
|
The contents is the same as train_path |
|
test_path (str, optional): The test dataset file. When mode is 'test', test_path is necessary. |
|
The annotation file is not necessary in test_path file. |
|
separator (str, optional): The separator of dataset list. Default: ' '. |
|
edge (bool, optional): Whether to compute edge while training. Default: False |
|
|
|
Examples: |
|
|
|
import paddlers.models.ppseg.transforms as T |
|
from paddlers.models.ppseg.datasets import Dataset |
|
|
|
transforms = [T.RandomPaddingCrop(crop_size=(512,512)), T.Normalize()] |
|
dataset_root = 'dataset_root_path' |
|
train_path = 'train_path' |
|
num_classes = 2 |
|
dataset = Dataset(transforms = transforms, |
|
dataset_root = dataset_root, |
|
num_classes = 2, |
|
train_path = train_path, |
|
mode = 'train') |
|
|
|
""" |
|
|
|
def __init__(self, |
|
transforms, |
|
dataset_root, |
|
num_classes, |
|
mode='train', |
|
train_path=None, |
|
val_path=None, |
|
test_path=None, |
|
separator=' ', |
|
ignore_index=255, |
|
edge=False): |
|
self.dataset_root = dataset_root |
|
self.transforms = Compose(transforms) |
|
self.file_list = list() |
|
self.mode = mode.lower() |
|
self.num_classes = num_classes |
|
self.ignore_index = ignore_index |
|
self.edge = edge |
|
|
|
if self.mode not in ['train', 'val', 'test']: |
|
raise ValueError( |
|
"mode should be 'train', 'val' or 'test', but got {}.".format( |
|
self.mode)) |
|
|
|
if self.transforms is None: |
|
raise ValueError("`transforms` is necessary, but it is None.") |
|
|
|
if not os.path.exists(self.dataset_root): |
|
raise FileNotFoundError('there is not `dataset_root`: {}.'.format( |
|
self.dataset_root)) |
|
|
|
if self.mode == 'train': |
|
if train_path is None: |
|
raise ValueError( |
|
'When `mode` is "train", `train_path` is necessary, but it is None.' |
|
) |
|
elif not os.path.exists(train_path): |
|
raise FileNotFoundError( |
|
'`train_path` is not found: {}'.format(train_path)) |
|
else: |
|
file_path = train_path |
|
elif self.mode == 'val': |
|
if val_path is None: |
|
raise ValueError( |
|
'When `mode` is "val", `val_path` is necessary, but it is None.' |
|
) |
|
elif not os.path.exists(val_path): |
|
raise FileNotFoundError( |
|
'`val_path` is not found: {}'.format(val_path)) |
|
else: |
|
file_path = val_path |
|
else: |
|
if test_path is None: |
|
raise ValueError( |
|
'When `mode` is "test", `test_path` is necessary, but it is None.' |
|
) |
|
elif not os.path.exists(test_path): |
|
raise FileNotFoundError( |
|
'`test_path` is not found: {}'.format(test_path)) |
|
else: |
|
file_path = test_path |
|
|
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
items = line.strip().split(separator) |
|
if len(items) != 2: |
|
if self.mode == 'train' or self.mode == 'val': |
|
raise ValueError( |
|
"File list format incorrect! In training or evaluation task it should be" |
|
" image_name{}label_name\\n".format(separator)) |
|
image_path = os.path.join(self.dataset_root, items[0]) |
|
label_path = None |
|
else: |
|
image_path = os.path.join(self.dataset_root, items[0]) |
|
label_path = os.path.join(self.dataset_root, items[1]) |
|
self.file_list.append([image_path, label_path]) |
|
|
|
def __getitem__(self, idx): |
|
image_path, label_path = self.file_list[idx] |
|
if self.mode == 'test': |
|
im, _ = self.transforms(im=image_path) |
|
im = im[np.newaxis, ...] |
|
return im, image_path |
|
elif self.mode == 'val': |
|
im, _ = self.transforms(im=image_path) |
|
label = np.asarray(Image.open(label_path)) |
|
label = label[np.newaxis, :, :] |
|
return im, label |
|
else: |
|
im, label = self.transforms(im=image_path, label=label_path) |
|
if self.edge: |
|
edge_mask = F.mask_to_binary_edge( |
|
label, radius=2, num_classes=self.num_classes) |
|
return im, label, edge_mask |
|
else: |
|
return im, label |
|
|
|
def __len__(self): |
|
return len(self.file_list)
|
|
|