You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
4.9 KiB
149 lines
4.9 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
import six |
|
import numpy as np |
|
|
|
|
|
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0): |
|
det_res = [] |
|
k = 0 |
|
for i in range(len(bbox_nums)): |
|
cur_image_id = int(image_id[i][0]) |
|
det_nums = bbox_nums[i] |
|
for j in range(det_nums): |
|
dt = bboxes[k] |
|
k = k + 1 |
|
num_id, score, xmin, ymin, xmax, ymax = dt.tolist() |
|
if int(num_id) < 0: |
|
continue |
|
category_id = label_to_cat_id_map[int(num_id)] |
|
w = xmax - xmin + bias |
|
h = ymax - ymin + bias |
|
bbox = [xmin, ymin, w, h] |
|
dt_res = { |
|
'image_id': cur_image_id, |
|
'category_id': category_id, |
|
'bbox': bbox, |
|
'score': score |
|
} |
|
det_res.append(dt_res) |
|
return det_res |
|
|
|
|
|
def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0): |
|
det_res = [] |
|
k = 0 |
|
for i in range(len(bbox_nums)): |
|
cur_image_id = int(image_id[i][0]) |
|
det_nums = bbox_nums[i] |
|
for j in range(det_nums): |
|
dt = bboxes[k] |
|
k = k + 1 |
|
num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist() |
|
if int(num_id) < 0: |
|
continue |
|
category_id = label_to_cat_id_map[int(num_id)] |
|
rbox = [x1, y1, x2, y2, x3, y3, x4, y4] |
|
dt_res = { |
|
'image_id': cur_image_id, |
|
'category_id': category_id, |
|
'bbox': rbox, |
|
'score': score |
|
} |
|
det_res.append(dt_res) |
|
return det_res |
|
|
|
|
|
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map): |
|
import pycocotools.mask as mask_util |
|
seg_res = [] |
|
k = 0 |
|
for i in range(len(mask_nums)): |
|
cur_image_id = int(image_id[i][0]) |
|
det_nums = mask_nums[i] |
|
for j in range(det_nums): |
|
mask = masks[k].astype(np.uint8) |
|
score = float(bboxes[k][1]) |
|
label = int(bboxes[k][0]) |
|
k = k + 1 |
|
if label == -1: |
|
continue |
|
cat_id = label_to_cat_id_map[label] |
|
rle = mask_util.encode( |
|
np.array( |
|
mask[:, :, None], order="F", dtype="uint8"))[0] |
|
if six.PY3: |
|
if 'counts' in rle: |
|
rle['counts'] = rle['counts'].decode("utf8") |
|
sg_res = { |
|
'image_id': cur_image_id, |
|
'category_id': cat_id, |
|
'segmentation': rle, |
|
'score': score |
|
} |
|
seg_res.append(sg_res) |
|
return seg_res |
|
|
|
|
|
def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map): |
|
import pycocotools.mask as mask_util |
|
segm_res = [] |
|
# for each batch |
|
segms = results['segm'].astype(np.uint8) |
|
clsid_labels = results['cate_label'] |
|
clsid_scores = results['cate_score'] |
|
lengths = segms.shape[0] |
|
im_id = int(image_id[0][0]) |
|
if lengths == 0 or segms is None: |
|
return None |
|
# for each sample |
|
for i in range(lengths - 1): |
|
clsid = int(clsid_labels[i]) |
|
catid = num_id_to_cat_id_map[clsid] |
|
score = float(clsid_scores[i]) |
|
mask = segms[i] |
|
segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0] |
|
segm['counts'] = segm['counts'].decode('utf8') |
|
coco_res = { |
|
'image_id': im_id, |
|
'category_id': catid, |
|
'segmentation': segm, |
|
'score': score |
|
} |
|
segm_res.append(coco_res) |
|
return segm_res |
|
|
|
|
|
def get_keypoint_res(results, im_id): |
|
anns = [] |
|
preds = results['keypoint'] |
|
for idx in range(im_id.shape[0]): |
|
image_id = im_id[idx].item() |
|
kpts, scores = preds[idx] |
|
for kpt, score in zip(kpts, scores): |
|
kpt = kpt.flatten() |
|
ann = { |
|
'image_id': image_id, |
|
'category_id': 1, # XXX hard code |
|
'keypoints': kpt.tolist(), |
|
'score': float(score) |
|
} |
|
x = kpt[0::3] |
|
y = kpt[1::3] |
|
x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min( |
|
y).item(), np.max(y).item() |
|
ann['area'] = (x1 - x0) * (y1 - y0) |
|
ann['bbox'] = [x0, y0, x1 - x0, y1 - y0] |
|
anns.append(ann) |
|
return anns
|
|
|