You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

149 lines
4.9 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import numpy as np
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
det_res = []
k = 0
for i in range(len(bbox_nums)):
cur_image_id = int(image_id[i][0])
det_nums = bbox_nums[i]
for j in range(det_nums):
dt = bboxes[k]
k = k + 1
num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
if int(num_id) < 0:
continue
category_id = label_to_cat_id_map[int(num_id)]
w = xmax - xmin + bias
h = ymax - ymin + bias
bbox = [xmin, ymin, w, h]
dt_res = {
'image_id': cur_image_id,
'category_id': category_id,
'bbox': bbox,
'score': score
}
det_res.append(dt_res)
return det_res
def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
det_res = []
k = 0
for i in range(len(bbox_nums)):
cur_image_id = int(image_id[i][0])
det_nums = bbox_nums[i]
for j in range(det_nums):
dt = bboxes[k]
k = k + 1
num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
if int(num_id) < 0:
continue
category_id = label_to_cat_id_map[int(num_id)]
rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
dt_res = {
'image_id': cur_image_id,
'category_id': category_id,
'bbox': rbox,
'score': score
}
det_res.append(dt_res)
return det_res
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
import pycocotools.mask as mask_util
seg_res = []
k = 0
for i in range(len(mask_nums)):
cur_image_id = int(image_id[i][0])
det_nums = mask_nums[i]
for j in range(det_nums):
mask = masks[k].astype(np.uint8)
score = float(bboxes[k][1])
label = int(bboxes[k][0])
k = k + 1
if label == -1:
continue
cat_id = label_to_cat_id_map[label]
rle = mask_util.encode(
np.array(
mask[:, :, None], order="F", dtype="uint8"))[0]
if six.PY3:
if 'counts' in rle:
rle['counts'] = rle['counts'].decode("utf8")
sg_res = {
'image_id': cur_image_id,
'category_id': cat_id,
'segmentation': rle,
'score': score
}
seg_res.append(sg_res)
return seg_res
def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
import pycocotools.mask as mask_util
segm_res = []
# for each batch
segms = results['segm'].astype(np.uint8)
clsid_labels = results['cate_label']
clsid_scores = results['cate_score']
lengths = segms.shape[0]
im_id = int(image_id[0][0])
if lengths == 0 or segms is None:
return None
# for each sample
for i in range(lengths - 1):
clsid = int(clsid_labels[i])
catid = num_id_to_cat_id_map[clsid]
score = float(clsid_scores[i])
mask = segms[i]
segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
segm['counts'] = segm['counts'].decode('utf8')
coco_res = {
'image_id': im_id,
'category_id': catid,
'segmentation': segm,
'score': score
}
segm_res.append(coco_res)
return segm_res
def get_keypoint_res(results, im_id):
anns = []
preds = results['keypoint']
for idx in range(im_id.shape[0]):
image_id = im_id[idx].item()
kpts, scores = preds[idx]
for kpt, score in zip(kpts, scores):
kpt = kpt.flatten()
ann = {
'image_id': image_id,
'category_id': 1, # XXX hard code
'keypoints': kpt.tolist(),
'score': float(score)
}
x = kpt[0::3]
y = kpt[1::3]
x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(
y).item(), np.max(y).item()
ann['area'] = (x1 - x0) * (y1 - y0)
ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
anns.append(ann)
return anns