You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
3.5 KiB
99 lines
3.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
|
|
# 超分辨率数据集定义 |
|
class SRdataset(object): |
|
def __init__(self, |
|
mode, |
|
gt_floder, |
|
lq_floder, |
|
transforms, |
|
scale, |
|
num_workers=4, |
|
batch_size=8): |
|
if mode == 'train': |
|
preprocess = [] |
|
preprocess.append({ |
|
'name': 'LoadImageFromFile', |
|
'key': 'lq' |
|
}) # 加载方式 |
|
preprocess.append({'name': 'LoadImageFromFile', 'key': 'gt'}) |
|
preprocess.append(transforms) # 变换方式 |
|
self.dataset = { |
|
'name': 'SRDataset', |
|
'gt_folder': gt_floder, |
|
'lq_folder': lq_floder, |
|
'num_workers': num_workers, |
|
'batch_size': batch_size, |
|
'scale': scale, |
|
'preprocess': preprocess |
|
} |
|
|
|
if mode == "test": |
|
preprocess = [] |
|
preprocess.append({'name': 'LoadImageFromFile', 'key': 'lq'}) |
|
preprocess.append({'name': 'LoadImageFromFile', 'key': 'gt'}) |
|
preprocess.append(transforms) |
|
self.dataset = { |
|
'name': 'SRDataset', |
|
'gt_folder': gt_floder, |
|
'lq_folder': lq_floder, |
|
'scale': scale, |
|
'preprocess': preprocess |
|
} |
|
|
|
def __call__(self): |
|
return self.dataset |
|
|
|
|
|
# 对定义的transforms处理方式组合,返回字典 |
|
class ComposeTrans(object): |
|
def __init__(self, input_keys, output_keys, pipelines): |
|
if not isinstance(pipelines, list): |
|
raise TypeError( |
|
'Type of transforms is invalid. Must be List, but received is {}' |
|
.format(type(pipelines))) |
|
if len(pipelines) < 1: |
|
raise ValueError( |
|
'Length of transforms must not be less than 1, but received is {}' |
|
.format(len(pipelines))) |
|
self.transforms = pipelines |
|
self.output_length = len(output_keys) # 当output_keys的长度为3时,是DRN训练 |
|
self.input_keys = input_keys |
|
self.output_keys = output_keys |
|
|
|
def __call__(self): |
|
pipeline = [] |
|
for op in self.transforms: |
|
if op['name'] == 'SRPairedRandomCrop': |
|
op['keys'] = ['image'] * 2 |
|
else: |
|
op['keys'] = ['image'] * self.output_length |
|
pipeline.append(op) |
|
if self.output_length == 2: |
|
transform_dict = { |
|
'name': 'Transforms', |
|
'input_keys': self.input_keys, |
|
'pipeline': pipeline |
|
} |
|
else: |
|
transform_dict = { |
|
'name': 'Transforms', |
|
'input_keys': self.input_keys, |
|
'output_keys': self.output_keys, |
|
'pipeline': pipeline |
|
} |
|
|
|
return transform_dict
|
|
|