You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.5 KiB
100 lines
3.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
|
|
from .layers import make_norm, Conv3x3, CBAM |
|
from .stanet import Backbone, Decoder |
|
|
|
|
|
class DSAMNet(nn.Layer): |
|
""" |
|
The DSAMNet implementation based on PaddlePaddle. |
|
|
|
The original article refers to |
|
Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing |
|
Change Detection" |
|
(https://ieeexplore.ieee.org/document/9467555). |
|
|
|
Note that this implementation differs from the original work in two aspects: |
|
1. We do not use multiple dilation rates in layer 4 of the ResNet backbone. |
|
2. A classification head is used in place of the original metric learning-based head to stablize the training process. |
|
|
|
Args: |
|
in_channels (int): The number of bands of the input images. |
|
num_classes (int): The number of target classes. |
|
ca_ratio (int, optional): The channel reduction ratio for the channel attention module. Default: 8. |
|
sa_kernel (int, optional): The size of the convolutional kernel used in the spatial attention module. Default: 7. |
|
""" |
|
|
|
def __init__(self, in_channels, num_classes, ca_ratio=8, sa_kernel=7): |
|
super(DSAMNet, self).__init__() |
|
|
|
WIDTH = 64 |
|
|
|
self.backbone = Backbone( |
|
in_ch=in_channels, arch='resnet18', strides=(1, 1, 2, 2, 1)) |
|
self.decoder = Decoder(WIDTH) |
|
|
|
self.cbam1 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel) |
|
self.cbam2 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel) |
|
|
|
self.dsl2 = DSLayer(64, num_classes, 32, stride=2, output_padding=1) |
|
self.dsl3 = DSLayer(128, num_classes, 32, stride=4, output_padding=3) |
|
|
|
self.conv_out = nn.Sequential( |
|
Conv3x3( |
|
WIDTH, WIDTH, norm=True, act=True), |
|
Conv3x3(WIDTH, num_classes)) |
|
|
|
self.init_weight() |
|
|
|
def forward(self, t1, t2): |
|
f1 = self.backbone(t1) |
|
f2 = self.backbone(t2) |
|
|
|
y1 = self.decoder(f1) |
|
y2 = self.decoder(f2) |
|
|
|
y1 = self.cbam1(y1) |
|
y2 = self.cbam2(y2) |
|
|
|
out = paddle.abs(y1 - y2) |
|
out = F.interpolate( |
|
out, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True) |
|
pred = self.conv_out(out) |
|
|
|
if not self.training: |
|
return [pred] |
|
else: |
|
ds2 = self.dsl2(paddle.abs(f1[0] - f2[0])) |
|
ds3 = self.dsl3(paddle.abs(f1[1] - f2[1])) |
|
return [pred, ds2, ds3] |
|
|
|
def init_weight(self): |
|
pass |
|
|
|
|
|
class DSLayer(nn.Sequential): |
|
def __init__(self, in_ch, out_ch, itm_ch, **convd_kwargs): |
|
super(DSLayer, self).__init__( |
|
nn.Conv2DTranspose( |
|
in_ch, itm_ch, kernel_size=3, padding=1, **convd_kwargs), |
|
make_norm(itm_ch), |
|
nn.ReLU(), |
|
nn.Dropout2D(p=0.2), |
|
nn.Conv2DTranspose( |
|
itm_ch, out_ch, kernel_size=3, padding=1))
|
|
|