You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
742 lines
30 KiB
742 lines
30 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import sys |
|
import copy |
|
import time |
|
|
|
import numpy as np |
|
import typing |
|
from PIL import Image, ImageOps |
|
|
|
import paddle |
|
import paddle.distributed as dist |
|
from paddle.distributed import fleet |
|
from paddle import amp |
|
from paddle.static import InputSpec |
|
from paddlers.models.ppdet.optimizer import ModelEMA |
|
|
|
from paddlers.models.ppdet.core.workspace import create |
|
from paddlers.models.ppdet.modeling.architectures.meta_arch import BaseArch |
|
from paddlers.models.ppdet.utils.checkpoint import load_weight, load_pretrain_weight |
|
from paddlers.models.ppdet.utils.visualizer import visualize_results, save_result |
|
from paddlers.models.ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval |
|
from paddlers.models.ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric |
|
from paddlers.models.ppdet.data.source.sniper_coco import SniperCOCODataSet |
|
from paddlers.models.ppdet.data.source.category import get_categories |
|
from paddlers.models.ppdet.utils import stats |
|
from paddlers.models.ppdet.utils import profiler |
|
|
|
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator |
|
from .export_utils import _dump_infer_config, _prune_input_spec |
|
|
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger('ppdet.engine') |
|
|
|
__all__ = ['Trainer'] |
|
|
|
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT'] |
|
|
|
|
|
class Trainer(object): |
|
def __init__(self, cfg, mode='train'): |
|
self.cfg = cfg |
|
assert mode.lower() in ['train', 'eval', 'test'], \ |
|
"mode should be 'train', 'eval' or 'test'" |
|
self.mode = mode.lower() |
|
self.optimizer = None |
|
self.is_loaded_weights = False |
|
|
|
# build data loader |
|
if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']: |
|
self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())] |
|
else: |
|
self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())] |
|
|
|
if cfg.architecture == 'DeepSORT' and self.mode == 'train': |
|
logger.error('DeepSORT has no need of training on mot dataset.') |
|
sys.exit(1) |
|
|
|
if self.mode == 'train': |
|
self.loader = create('{}Reader'.format(self.mode.capitalize()))( |
|
self.dataset, cfg.worker_num) |
|
|
|
if cfg.architecture == 'JDE' and self.mode == 'train': |
|
cfg['JDEEmbeddingHead'][ |
|
'num_identities'] = self.dataset.num_identities_dict[0] |
|
# JDE only support single class MOT now. |
|
|
|
if cfg.architecture == 'FairMOT' and self.mode == 'train': |
|
cfg['FairMOTEmbeddingHead'][ |
|
'num_identities_dict'] = self.dataset.num_identities_dict |
|
# FairMOT support single class and multi-class MOT now. |
|
|
|
# build model |
|
if 'model' not in self.cfg: |
|
self.model = create(cfg.architecture) |
|
else: |
|
self.model = self.cfg.model |
|
self.is_loaded_weights = True |
|
|
|
#normalize params for deploy |
|
self.model.load_meanstd(cfg['TestReader']['sample_transforms']) |
|
|
|
self.use_ema = ('use_ema' in cfg and cfg['use_ema']) |
|
if self.use_ema: |
|
ema_decay = self.cfg.get('ema_decay', 0.9998) |
|
cycle_epoch = self.cfg.get('cycle_epoch', -1) |
|
self.ema = ModelEMA( |
|
self.model, |
|
decay=ema_decay, |
|
use_thres_step=True, |
|
cycle_epoch=cycle_epoch) |
|
|
|
# EvalDataset build with BatchSampler to evaluate in single device |
|
# TODO: multi-device evaluate |
|
if self.mode == 'eval': |
|
self._eval_batch_sampler = paddle.io.BatchSampler( |
|
self.dataset, batch_size=self.cfg.EvalReader['batch_size']) |
|
reader_name = '{}Reader'.format(self.mode.capitalize()) |
|
# If metric is VOC, need to be set collate_batch=False. |
|
if cfg.metric == 'VOC': |
|
cfg[reader_name]['collate_batch'] = False |
|
self.loader = create(reader_name)(self.dataset, cfg.worker_num, |
|
self._eval_batch_sampler) |
|
# TestDataset build after user set images, skip loader creation here |
|
|
|
# build optimizer in train mode |
|
if self.mode == 'train': |
|
steps_per_epoch = len(self.loader) |
|
self.lr = create('LearningRate')(steps_per_epoch) |
|
self.optimizer = create('OptimizerBuilder')(self.lr, self.model) |
|
|
|
if self.cfg.get('unstructured_prune'): |
|
self.pruner = create('UnstructuredPruner')(self.model, |
|
steps_per_epoch) |
|
|
|
self._nranks = dist.get_world_size() |
|
self._local_rank = dist.get_rank() |
|
|
|
self.status = {} |
|
|
|
self.start_epoch = 0 |
|
self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch |
|
|
|
# initial default callbacks |
|
self._init_callbacks() |
|
|
|
# initial default metrics |
|
self._init_metrics() |
|
self._reset_metrics() |
|
|
|
def _init_callbacks(self): |
|
if self.mode == 'train': |
|
self._callbacks = [LogPrinter(self), Checkpointer(self)] |
|
if self.cfg.get('use_vdl', False): |
|
self._callbacks.append(VisualDLWriter(self)) |
|
if self.cfg.get('save_proposals', False): |
|
self._callbacks.append(SniperProposalsGenerator(self)) |
|
self._compose_callback = ComposeCallback(self._callbacks) |
|
elif self.mode == 'eval': |
|
self._callbacks = [LogPrinter(self)] |
|
if self.cfg.metric == 'WiderFace': |
|
self._callbacks.append(WiferFaceEval(self)) |
|
self._compose_callback = ComposeCallback(self._callbacks) |
|
elif self.mode == 'test' and self.cfg.get('use_vdl', False): |
|
self._callbacks = [VisualDLWriter(self)] |
|
self._compose_callback = ComposeCallback(self._callbacks) |
|
else: |
|
self._callbacks = [] |
|
self._compose_callback = None |
|
|
|
def _init_metrics(self, validate=False): |
|
if self.mode == 'test' or (self.mode == 'train' and not validate): |
|
self._metrics = [] |
|
return |
|
classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False |
|
if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO": |
|
# TODO: bias should be unified |
|
bias = self.cfg['bias'] if 'bias' in self.cfg else 0 |
|
output_eval = self.cfg['output_eval'] \ |
|
if 'output_eval' in self.cfg else None |
|
save_prediction_only = self.cfg.get('save_prediction_only', False) |
|
|
|
# pass clsid2catid info to metric instance to avoid multiple loading |
|
# annotation file |
|
clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \ |
|
if self.mode == 'eval' else None |
|
|
|
# when do validation in train, annotation file should be get from |
|
# EvalReader instead of self.dataset(which is TrainReader) |
|
anno_file = self.dataset.get_anno() |
|
dataset = self.dataset |
|
if self.mode == 'train' and validate: |
|
eval_dataset = self.cfg['EvalDataset'] |
|
eval_dataset.check_or_download_dataset() |
|
anno_file = eval_dataset.get_anno() |
|
dataset = eval_dataset |
|
|
|
IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox' |
|
if self.cfg.metric == "COCO": |
|
self._metrics = [ |
|
COCOMetric( |
|
anno_file=anno_file, |
|
clsid2catid=clsid2catid, |
|
classwise=classwise, |
|
output_eval=output_eval, |
|
bias=bias, |
|
IouType=IouType, |
|
save_prediction_only=save_prediction_only) |
|
] |
|
elif self.cfg.metric == "SNIPERCOCO": # sniper |
|
self._metrics = [ |
|
SNIPERCOCOMetric( |
|
anno_file=anno_file, |
|
dataset=dataset, |
|
clsid2catid=clsid2catid, |
|
classwise=classwise, |
|
output_eval=output_eval, |
|
bias=bias, |
|
IouType=IouType, |
|
save_prediction_only=save_prediction_only) |
|
] |
|
elif self.cfg.metric == 'RBOX': |
|
# TODO: bias should be unified |
|
bias = self.cfg['bias'] if 'bias' in self.cfg else 0 |
|
output_eval = self.cfg['output_eval'] \ |
|
if 'output_eval' in self.cfg else None |
|
save_prediction_only = self.cfg.get('save_prediction_only', False) |
|
|
|
# pass clsid2catid info to metric instance to avoid multiple loading |
|
# annotation file |
|
clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \ |
|
if self.mode == 'eval' else None |
|
|
|
# when do validation in train, annotation file should be get from |
|
# EvalReader instead of self.dataset(which is TrainReader) |
|
anno_file = self.dataset.get_anno() |
|
if self.mode == 'train' and validate: |
|
eval_dataset = self.cfg['EvalDataset'] |
|
eval_dataset.check_or_download_dataset() |
|
anno_file = eval_dataset.get_anno() |
|
|
|
self._metrics = [ |
|
RBoxMetric( |
|
anno_file=anno_file, |
|
clsid2catid=clsid2catid, |
|
classwise=classwise, |
|
output_eval=output_eval, |
|
bias=bias, |
|
save_prediction_only=save_prediction_only) |
|
] |
|
elif self.cfg.metric == 'VOC': |
|
self._metrics = [ |
|
VOCMetric( |
|
label_list=self.dataset.get_label_list(), |
|
class_num=self.cfg.num_classes, |
|
map_type=self.cfg.map_type, |
|
classwise=classwise) |
|
] |
|
elif self.cfg.metric == 'WiderFace': |
|
multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True |
|
self._metrics = [ |
|
WiderFaceMetric( |
|
image_dir=os.path.join(self.dataset.dataset_dir, |
|
self.dataset.image_dir), |
|
anno_file=self.dataset.get_anno(), |
|
multi_scale=multi_scale) |
|
] |
|
elif self.cfg.metric == 'KeyPointTopDownCOCOEval': |
|
eval_dataset = self.cfg['EvalDataset'] |
|
eval_dataset.check_or_download_dataset() |
|
anno_file = eval_dataset.get_anno() |
|
save_prediction_only = self.cfg.get('save_prediction_only', False) |
|
self._metrics = [ |
|
KeyPointTopDownCOCOEval( |
|
anno_file, |
|
len(eval_dataset), |
|
self.cfg.num_joints, |
|
self.cfg.save_dir, |
|
save_prediction_only=save_prediction_only) |
|
] |
|
elif self.cfg.metric == 'KeyPointTopDownMPIIEval': |
|
eval_dataset = self.cfg['EvalDataset'] |
|
eval_dataset.check_or_download_dataset() |
|
anno_file = eval_dataset.get_anno() |
|
save_prediction_only = self.cfg.get('save_prediction_only', False) |
|
self._metrics = [ |
|
KeyPointTopDownMPIIEval( |
|
anno_file, |
|
len(eval_dataset), |
|
self.cfg.num_joints, |
|
self.cfg.save_dir, |
|
save_prediction_only=save_prediction_only) |
|
] |
|
elif self.cfg.metric == 'MOTDet': |
|
self._metrics = [JDEDetMetric(), ] |
|
else: |
|
logger.warning("Metric not support for metric type {}".format( |
|
self.cfg.metric)) |
|
self._metrics = [] |
|
|
|
def _reset_metrics(self): |
|
for metric in self._metrics: |
|
metric.reset() |
|
|
|
def register_callbacks(self, callbacks): |
|
callbacks = [c for c in list(callbacks) if c is not None] |
|
for c in callbacks: |
|
assert isinstance(c, Callback), \ |
|
"metrics shoule be instances of subclass of Metric" |
|
self._callbacks.extend(callbacks) |
|
self._compose_callback = ComposeCallback(self._callbacks) |
|
|
|
def register_metrics(self, metrics): |
|
metrics = [m for m in list(metrics) if m is not None] |
|
for m in metrics: |
|
assert isinstance(m, Metric), \ |
|
"metrics shoule be instances of subclass of Metric" |
|
self._metrics.extend(metrics) |
|
|
|
def load_weights(self, weights): |
|
if self.is_loaded_weights: |
|
return |
|
self.start_epoch = 0 |
|
load_pretrain_weight(self.model, weights) |
|
logger.debug("Load weights {} to start training".format(weights)) |
|
|
|
def load_weights_sde(self, det_weights, reid_weights): |
|
if self.model.detector: |
|
load_weight(self.model.detector, det_weights) |
|
load_weight(self.model.reid, reid_weights) |
|
else: |
|
load_weight(self.model.reid, reid_weights) |
|
|
|
def resume_weights(self, weights): |
|
# support Distill resume weights |
|
if hasattr(self.model, 'student_model'): |
|
self.start_epoch = load_weight(self.model.student_model, weights, |
|
self.optimizer) |
|
else: |
|
self.start_epoch = load_weight(self.model, weights, self.optimizer) |
|
logger.debug("Resume weights of epoch {}".format(self.start_epoch)) |
|
|
|
def train(self, validate=False): |
|
assert self.mode == 'train', "Model not in 'train' mode" |
|
Init_mark = False |
|
|
|
sync_bn = ( |
|
getattr(self.cfg, 'norm_type', None) in [None, 'sync_bn'] and |
|
self.cfg.use_gpu and self._nranks > 1) |
|
if sync_bn: |
|
self.model = BaseArch.convert_sync_batchnorm(self.model) |
|
|
|
model = self.model |
|
if self.cfg.get('fleet', False): |
|
model = fleet.distributed_model(model) |
|
self.optimizer = fleet.distributed_optimizer(self.optimizer) |
|
elif self._nranks > 1: |
|
find_unused_parameters = self.cfg[ |
|
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False |
|
model = paddle.DataParallel( |
|
self.model, find_unused_parameters=find_unused_parameters) |
|
|
|
# initial fp16 |
|
if self.cfg.get('fp16', False): |
|
scaler = amp.GradScaler( |
|
enable=self.cfg.use_gpu, init_loss_scaling=1024) |
|
|
|
self.status.update({ |
|
'epoch_id': self.start_epoch, |
|
'step_id': 0, |
|
'steps_per_epoch': len(self.loader) |
|
}) |
|
|
|
self.status['batch_time'] = stats.SmoothedValue( |
|
self.cfg.log_iter, fmt='{avg:.4f}') |
|
self.status['data_time'] = stats.SmoothedValue( |
|
self.cfg.log_iter, fmt='{avg:.4f}') |
|
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter) |
|
|
|
if self.cfg.get('print_flops', False): |
|
flops_loader = create('{}Reader'.format(self.mode.capitalize()))( |
|
self.dataset, self.cfg.worker_num) |
|
self._flops(flops_loader) |
|
profiler_options = self.cfg.get('profiler_options', None) |
|
|
|
self._compose_callback.on_train_begin(self.status) |
|
|
|
for epoch_id in range(self.start_epoch, self.cfg.epoch): |
|
self.status['mode'] = 'train' |
|
self.status['epoch_id'] = epoch_id |
|
self._compose_callback.on_epoch_begin(self.status) |
|
self.loader.dataset.set_epoch(epoch_id) |
|
model.train() |
|
iter_tic = time.time() |
|
for step_id, data in enumerate(self.loader): |
|
self.status['data_time'].update(time.time() - iter_tic) |
|
self.status['step_id'] = step_id |
|
profiler.add_profiler_step(profiler_options) |
|
self._compose_callback.on_step_begin(self.status) |
|
data['epoch_id'] = epoch_id |
|
|
|
if self.cfg.get('fp16', False): |
|
with amp.auto_cast(enable=self.cfg.use_gpu): |
|
# model forward |
|
outputs = model(data) |
|
loss = outputs['loss'] |
|
|
|
# model backward |
|
scaled_loss = scaler.scale(loss) |
|
scaled_loss.backward() |
|
# in dygraph mode, optimizer.minimize is equal to optimizer.step |
|
scaler.minimize(self.optimizer, scaled_loss) |
|
else: |
|
# model forward |
|
outputs = model(data) |
|
loss = outputs['loss'] |
|
# model backward |
|
loss.backward() |
|
self.optimizer.step() |
|
curr_lr = self.optimizer.get_lr() |
|
self.lr.step() |
|
if self.cfg.get('unstructured_prune'): |
|
self.pruner.step() |
|
self.optimizer.clear_grad() |
|
self.status['learning_rate'] = curr_lr |
|
|
|
if self._nranks < 2 or self._local_rank == 0: |
|
self.status['training_staus'].update(outputs) |
|
|
|
self.status['batch_time'].update(time.time() - iter_tic) |
|
self._compose_callback.on_step_end(self.status) |
|
if self.use_ema: |
|
self.ema.update(self.model) |
|
iter_tic = time.time() |
|
|
|
# apply ema weight on model |
|
if self.use_ema: |
|
weight = copy.deepcopy(self.model.state_dict()) |
|
self.model.set_dict(self.ema.apply()) |
|
if self.cfg.get('unstructured_prune'): |
|
self.pruner.update_params() |
|
|
|
self._compose_callback.on_epoch_end(self.status) |
|
|
|
if validate and (self._nranks < 2 or self._local_rank == 0) \ |
|
and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \ |
|
or epoch_id == self.end_epoch - 1): |
|
if not hasattr(self, '_eval_loader'): |
|
# build evaluation dataset and loader |
|
self._eval_dataset = self.cfg.EvalDataset |
|
self._eval_batch_sampler = \ |
|
paddle.io.BatchSampler( |
|
self._eval_dataset, |
|
batch_size=self.cfg.EvalReader['batch_size']) |
|
# If metric is VOC, need to be set collate_batch=False. |
|
if self.cfg.metric == 'VOC': |
|
self.cfg['EvalReader']['collate_batch'] = False |
|
self._eval_loader = create('EvalReader')( |
|
self._eval_dataset, |
|
self.cfg.worker_num, |
|
batch_sampler=self._eval_batch_sampler) |
|
# if validation in training is enabled, metrics should be re-init |
|
# Init_mark makes sure this code will only execute once |
|
if validate and Init_mark == False: |
|
Init_mark = True |
|
self._init_metrics(validate=validate) |
|
self._reset_metrics() |
|
with paddle.no_grad(): |
|
self.status['save_best_model'] = True |
|
self._eval_with_loader(self._eval_loader) |
|
|
|
# restore origin weight on model |
|
if self.use_ema: |
|
self.model.set_dict(weight) |
|
|
|
self._compose_callback.on_train_end(self.status) |
|
|
|
def _eval_with_loader(self, loader): |
|
sample_num = 0 |
|
tic = time.time() |
|
self._compose_callback.on_epoch_begin(self.status) |
|
self.status['mode'] = 'eval' |
|
self.model.eval() |
|
if self.cfg.get('print_flops', False): |
|
flops_loader = create('{}Reader'.format(self.mode.capitalize()))( |
|
self.dataset, self.cfg.worker_num, self._eval_batch_sampler) |
|
self._flops(flops_loader) |
|
for step_id, data in enumerate(loader): |
|
self.status['step_id'] = step_id |
|
self._compose_callback.on_step_begin(self.status) |
|
# forward |
|
outs = self.model(data) |
|
|
|
# update metrics |
|
for metric in self._metrics: |
|
metric.update(data, outs) |
|
|
|
# multi-scale inputs: all inputs have same im_id |
|
if isinstance(data, typing.Sequence): |
|
sample_num += data[0]['im_id'].numpy().shape[0] |
|
else: |
|
sample_num += data['im_id'].numpy().shape[0] |
|
self._compose_callback.on_step_end(self.status) |
|
|
|
self.status['sample_num'] = sample_num |
|
self.status['cost_time'] = time.time() - tic |
|
|
|
# accumulate metric to log out |
|
for metric in self._metrics: |
|
metric.accumulate() |
|
metric.log() |
|
self._compose_callback.on_epoch_end(self.status) |
|
# reset metric states for metric may performed multiple times |
|
self._reset_metrics() |
|
|
|
def evaluate(self): |
|
with paddle.no_grad(): |
|
self._eval_with_loader(self.loader) |
|
|
|
def predict(self, |
|
images, |
|
draw_threshold=0.5, |
|
output_dir='output', |
|
save_txt=False): |
|
self.dataset.set_images(images) |
|
loader = create('TestReader')(self.dataset, 0) |
|
|
|
imid2path = self.dataset.get_imid2path() |
|
|
|
anno_file = self.dataset.get_anno() |
|
clsid2catid, catid2name = get_categories( |
|
self.cfg.metric, anno_file=anno_file) |
|
|
|
# Run Infer |
|
self.status['mode'] = 'test' |
|
self.model.eval() |
|
if self.cfg.get('print_flops', False): |
|
flops_loader = create('TestReader')(self.dataset, 0) |
|
self._flops(flops_loader) |
|
results = [] |
|
for step_id, data in enumerate(loader): |
|
self.status['step_id'] = step_id |
|
# forward |
|
outs = self.model(data) |
|
|
|
for key in ['im_shape', 'scale_factor', 'im_id']: |
|
if isinstance(data, typing.Sequence): |
|
outs[key] = data[0][key] |
|
else: |
|
outs[key] = data[key] |
|
for key, value in outs.items(): |
|
if hasattr(value, 'numpy'): |
|
outs[key] = value.numpy() |
|
results.append(outs) |
|
# sniper |
|
if type(self.dataset) == SniperCOCODataSet: |
|
results = self.dataset.anno_cropper.aggregate_chips_detections( |
|
results) |
|
|
|
for outs in results: |
|
batch_res = get_infer_results(outs, clsid2catid) |
|
bbox_num = outs['bbox_num'] |
|
|
|
start = 0 |
|
for i, im_id in enumerate(outs['im_id']): |
|
image_path = imid2path[int(im_id)] |
|
image = Image.open(image_path).convert('RGB') |
|
image = ImageOps.exif_transpose(image) |
|
self.status['original_image'] = np.array(image.copy()) |
|
|
|
end = start + bbox_num[i] |
|
bbox_res = batch_res['bbox'][start:end] \ |
|
if 'bbox' in batch_res else None |
|
mask_res = batch_res['mask'][start:end] \ |
|
if 'mask' in batch_res else None |
|
segm_res = batch_res['segm'][start:end] \ |
|
if 'segm' in batch_res else None |
|
keypoint_res = batch_res['keypoint'][start:end] \ |
|
if 'keypoint' in batch_res else None |
|
image = visualize_results( |
|
image, bbox_res, mask_res, segm_res, keypoint_res, |
|
int(im_id), catid2name, draw_threshold) |
|
self.status['result_image'] = np.array(image.copy()) |
|
if self._compose_callback: |
|
self._compose_callback.on_step_end(self.status) |
|
# save image with detection |
|
save_name = self._get_save_image_name(output_dir, image_path) |
|
logger.info("Detection bbox results save in {}".format( |
|
save_name)) |
|
image.save(save_name, quality=95) |
|
if save_txt: |
|
save_path = os.path.splitext(save_name)[0] + '.txt' |
|
results = {} |
|
results["im_id"] = im_id |
|
if bbox_res: |
|
results["bbox_res"] = bbox_res |
|
if keypoint_res: |
|
results["keypoint_res"] = keypoint_res |
|
save_result(save_path, results, catid2name, draw_threshold) |
|
start = end |
|
|
|
def _get_save_image_name(self, output_dir, image_path): |
|
""" |
|
Get save image name from source image path. |
|
""" |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
image_name = os.path.split(image_path)[-1] |
|
name, ext = os.path.splitext(image_name) |
|
return os.path.join(output_dir, "{}".format(name)) + ext |
|
|
|
def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True): |
|
image_shape = None |
|
im_shape = [None, 2] |
|
scale_factor = [None, 2] |
|
if self.cfg.architecture in MOT_ARCH: |
|
test_reader_name = 'TestMOTReader' |
|
else: |
|
test_reader_name = 'TestReader' |
|
if 'inputs_def' in self.cfg[test_reader_name]: |
|
inputs_def = self.cfg[test_reader_name]['inputs_def'] |
|
image_shape = inputs_def.get('image_shape', None) |
|
# set image_shape=[None, 3, -1, -1] as default |
|
if image_shape is None: |
|
image_shape = [None, 3, -1, -1] |
|
|
|
if len(image_shape) == 3: |
|
image_shape = [None] + image_shape |
|
else: |
|
im_shape = [image_shape[0], 2] |
|
scale_factor = [image_shape[0], 2] |
|
|
|
if hasattr(self.model, 'deploy'): |
|
self.model.deploy = True |
|
if hasattr(self.model, 'fuse_norm'): |
|
self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize', |
|
False) |
|
|
|
# Save infer cfg |
|
_dump_infer_config(self.cfg, |
|
os.path.join(save_dir, 'infer_cfg.yml'), |
|
image_shape, self.model) |
|
|
|
input_spec = [{ |
|
"image": InputSpec( |
|
shape=image_shape, name='image'), |
|
"im_shape": InputSpec( |
|
shape=im_shape, name='im_shape'), |
|
"scale_factor": InputSpec( |
|
shape=scale_factor, name='scale_factor') |
|
}] |
|
if self.cfg.architecture == 'DeepSORT': |
|
input_spec[0].update({ |
|
"crops": InputSpec( |
|
shape=[None, 3, 192, 64], name='crops') |
|
}) |
|
if prune_input: |
|
static_model = paddle.jit.to_static( |
|
self.model, input_spec=input_spec) |
|
# NOTE: dy2st do not pruned program, but jit.save will prune program |
|
# input spec, prune input spec here and save with pruned input spec |
|
pruned_input_spec = _prune_input_spec( |
|
input_spec, static_model.forward.main_program, |
|
static_model.forward.outputs) |
|
else: |
|
static_model = None |
|
pruned_input_spec = input_spec |
|
|
|
# TODO: Hard code, delete it when support prune input_spec. |
|
if self.cfg.architecture == 'PicoDet': |
|
pruned_input_spec = [{ |
|
"image": InputSpec( |
|
shape=image_shape, name='image') |
|
}] |
|
|
|
return static_model, pruned_input_spec |
|
|
|
def export(self, output_dir='output_inference'): |
|
self.model.eval() |
|
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0] |
|
save_dir = os.path.join(output_dir, model_name) |
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
|
|
static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec( |
|
save_dir) |
|
|
|
# dy2st and save model |
|
if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT': |
|
paddle.jit.save( |
|
static_model, |
|
os.path.join(save_dir, 'model'), |
|
input_spec=pruned_input_spec) |
|
else: |
|
self.cfg.slim.save_quantized_model( |
|
self.model, |
|
os.path.join(save_dir, 'model'), |
|
input_spec=pruned_input_spec) |
|
logger.info("Export model and saved in {}".format(save_dir)) |
|
|
|
def post_quant(self, output_dir='output_inference'): |
|
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0] |
|
save_dir = os.path.join(output_dir, model_name) |
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
|
|
for idx, data in enumerate(self.loader): |
|
self.model(data) |
|
if idx == int(self.cfg.get('quant_batch_num', 10)): |
|
break |
|
|
|
# TODO: support prune input_spec |
|
_, pruned_input_spec = self._get_infer_cfg_and_input_spec( |
|
save_dir, prune_input=False) |
|
|
|
self.cfg.slim.save_quantized_model( |
|
self.model, |
|
os.path.join(save_dir, 'model'), |
|
input_spec=pruned_input_spec) |
|
logger.info("Export Post-Quant model and saved in {}".format(save_dir)) |
|
|
|
def _flops(self, loader): |
|
self.model.eval() |
|
try: |
|
import paddleslim |
|
except Exception as e: |
|
logger.warning( |
|
'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`' |
|
) |
|
return |
|
|
|
from paddleslim.analysis import dygraph_flops as flops |
|
input_data = None |
|
for data in loader: |
|
input_data = data |
|
break |
|
|
|
input_spec = [{ |
|
"image": input_data['image'][0].unsqueeze(0), |
|
"im_shape": input_data['im_shape'][0].unsqueeze(0), |
|
"scale_factor": input_data['scale_factor'][0].unsqueeze(0) |
|
}] |
|
flops = flops(self.model, input_spec) / (1000**3) |
|
logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format( |
|
flops, input_data['image'][0].unsqueeze(0).shape))
|
|
|