You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.8 KiB
97 lines
3.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
|
|
from .dataset import Dataset |
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress |
|
from paddlers.models.ppseg.utils import seg_env |
|
from paddlers.models.ppseg.cvlibs import manager |
|
from paddlers.models.ppseg.transforms import Compose |
|
|
|
URL = "https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip" |
|
|
|
|
|
@manager.DATASETS.add_component |
|
class OpticDiscSeg(Dataset): |
|
""" |
|
OpticDiscSeg dataset is extraced from iChallenge-AMD |
|
(https://ai.baidu.com/broad/subordinate?dataset=amd). |
|
|
|
Args: |
|
transforms (list): Transforms for image. |
|
dataset_root (str): The dataset directory. Default: None |
|
mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. |
|
edge (bool, optional): Whether to compute edge while training. Default: False |
|
""" |
|
NUM_CLASSES = 2 |
|
|
|
def __init__(self, |
|
dataset_root=None, |
|
transforms=None, |
|
mode='train', |
|
edge=False): |
|
self.dataset_root = dataset_root |
|
self.transforms = Compose(transforms) |
|
mode = mode.lower() |
|
self.mode = mode |
|
self.file_list = list() |
|
self.num_classes = self.NUM_CLASSES |
|
self.ignore_index = 255 |
|
self.edge = edge |
|
|
|
if mode not in ['train', 'val', 'test']: |
|
raise ValueError( |
|
"`mode` should be 'train', 'val' or 'test', but got {}.".format( |
|
mode)) |
|
|
|
if self.transforms is None: |
|
raise ValueError("`transforms` is necessary, but it is None.") |
|
|
|
if self.dataset_root is None: |
|
self.dataset_root = download_file_and_uncompress( |
|
url=URL, |
|
savepath=seg_env.DATA_HOME, |
|
extrapath=seg_env.DATA_HOME) |
|
elif not os.path.exists(self.dataset_root): |
|
self.dataset_root = os.path.normpath(self.dataset_root) |
|
savepath, extraname = self.dataset_root.rsplit( |
|
sep=os.path.sep, maxsplit=1) |
|
self.dataset_root = download_file_and_uncompress( |
|
url=URL, |
|
savepath=savepath, |
|
extrapath=savepath, |
|
extraname=extraname) |
|
|
|
if mode == 'train': |
|
file_path = os.path.join(self.dataset_root, 'train_list.txt') |
|
elif mode == 'val': |
|
file_path = os.path.join(self.dataset_root, 'val_list.txt') |
|
else: |
|
file_path = os.path.join(self.dataset_root, 'test_list.txt') |
|
|
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
items = line.strip().split() |
|
if len(items) != 2: |
|
if mode == 'train' or mode == 'val': |
|
raise Exception( |
|
"File list format incorrect! It should be" |
|
" image_name label_name\\n") |
|
image_path = os.path.join(self.dataset_root, items[0]) |
|
grt_path = None |
|
else: |
|
image_path = os.path.join(self.dataset_root, items[0]) |
|
grt_path = os.path.join(self.dataset_root, items[1]) |
|
self.file_list.append([image_path, grt_path])
|
|
|