You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.5 KiB
102 lines
3.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
from paddlers.models.ppdet.core.workspace import register, create |
|
from .meta_arch import BaseArch |
|
|
|
__all__ = ['S2ANet'] |
|
|
|
|
|
@register |
|
class S2ANet(BaseArch): |
|
__category__ = 'architecture' |
|
__inject__ = [ |
|
's2anet_head', |
|
's2anet_bbox_post_process', |
|
] |
|
|
|
def __init__(self, backbone, neck, s2anet_head, s2anet_bbox_post_process): |
|
""" |
|
S2ANet, see https://arxiv.org/pdf/2008.09397.pdf |
|
|
|
Args: |
|
backbone (object): backbone instance |
|
neck (object): `FPN` instance |
|
s2anet_head (object): `S2ANetHead` instance |
|
s2anet_bbox_post_process (object): `S2ANetBBoxPostProcess` instance |
|
""" |
|
super(S2ANet, self).__init__() |
|
self.backbone = backbone |
|
self.neck = neck |
|
self.s2anet_head = s2anet_head |
|
self.s2anet_bbox_post_process = s2anet_bbox_post_process |
|
|
|
@classmethod |
|
def from_config(cls, cfg, *args, **kwargs): |
|
backbone = create(cfg['backbone']) |
|
kwargs = {'input_shape': backbone.out_shape} |
|
neck = cfg['neck'] and create(cfg['neck'], **kwargs) |
|
|
|
out_shape = neck and neck.out_shape or backbone.out_shape |
|
kwargs = {'input_shape': out_shape} |
|
s2anet_head = create(cfg['s2anet_head'], **kwargs) |
|
s2anet_bbox_post_process = create(cfg['s2anet_bbox_post_process'], |
|
**kwargs) |
|
|
|
return { |
|
'backbone': backbone, |
|
'neck': neck, |
|
"s2anet_head": s2anet_head, |
|
"s2anet_bbox_post_process": s2anet_bbox_post_process, |
|
} |
|
|
|
def _forward(self): |
|
body_feats = self.backbone(self.inputs) |
|
if self.neck is not None: |
|
body_feats = self.neck(body_feats) |
|
self.s2anet_head(body_feats) |
|
if self.training: |
|
loss = self.s2anet_head.get_loss(self.inputs) |
|
total_loss = paddle.add_n(list(loss.values())) |
|
loss.update({'loss': total_loss}) |
|
return loss |
|
else: |
|
im_shape = self.inputs['im_shape'] |
|
scale_factor = self.inputs['scale_factor'] |
|
nms_pre = self.s2anet_bbox_post_process.nms_pre |
|
pred_scores, pred_bboxes = self.s2anet_head.get_prediction(nms_pre) |
|
|
|
# post_process |
|
pred_bboxes, bbox_num = self.s2anet_bbox_post_process(pred_scores, |
|
pred_bboxes) |
|
# rescale the prediction back to origin image |
|
pred_bboxes = self.s2anet_bbox_post_process.get_pred( |
|
pred_bboxes, bbox_num, im_shape, scale_factor) |
|
|
|
# output |
|
output = {'bbox': pred_bboxes, 'bbox_num': bbox_num} |
|
return output |
|
|
|
def get_loss(self, ): |
|
loss = self._forward() |
|
return loss |
|
|
|
def get_pred(self): |
|
output = self._forward() |
|
return output
|
|
|