You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
4.7 KiB
141 lines
4.7 KiB
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import paddle |
|
import paddle.nn as nn |
|
import typing |
|
|
|
from paddlers.models.ppdet.core.workspace import register |
|
from paddlers.models.ppdet.modeling.post_process import nms |
|
|
|
__all__ = ['BaseArch'] |
|
|
|
|
|
@register |
|
class BaseArch(nn.Layer): |
|
def __init__(self, data_format='NCHW'): |
|
super(BaseArch, self).__init__() |
|
self.data_format = data_format |
|
self.inputs = {} |
|
self.fuse_norm = False |
|
|
|
def load_meanstd(self, cfg_transform): |
|
self.scale = 1. |
|
self.mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape( |
|
(1, 3, 1, 1)) |
|
self.std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape( |
|
(1, 3, 1, 1)) |
|
for item in cfg_transform: |
|
if 'NormalizeImage' in item: |
|
self.mean = paddle.to_tensor(item['NormalizeImage'][ |
|
'mean']).reshape((1, 3, 1, 1)) |
|
self.std = paddle.to_tensor(item['NormalizeImage'][ |
|
'std']).reshape((1, 3, 1, 1)) |
|
if item['NormalizeImage'].get('is_scale', True): |
|
self.scale = 1. / 255. |
|
break |
|
if self.data_format == 'NHWC': |
|
self.mean = self.mean.reshape(1, 1, 1, 3) |
|
self.std = self.std.reshape(1, 1, 1, 3) |
|
|
|
def forward(self, inputs): |
|
if self.data_format == 'NHWC': |
|
image = inputs['image'] |
|
inputs['image'] = paddle.transpose(image, [0, 2, 3, 1]) |
|
|
|
if self.fuse_norm: |
|
image = inputs['image'] |
|
self.inputs['image'] = (image * self.scale - self.mean) / self.std |
|
self.inputs['im_shape'] = inputs['im_shape'] |
|
self.inputs['scale_factor'] = inputs['scale_factor'] |
|
else: |
|
self.inputs = inputs |
|
|
|
self.model_arch() |
|
|
|
if self.training: |
|
out = self.get_loss() |
|
else: |
|
inputs_list = [] |
|
# multi-scale input |
|
if not isinstance(inputs, typing.Sequence): |
|
inputs_list.append(inputs) |
|
else: |
|
inputs_list.extend(inputs) |
|
|
|
outs = [] |
|
for inp in inputs_list: |
|
self.inputs = inp |
|
outs.append(self.get_pred()) |
|
|
|
# multi-scale test |
|
if len(outs) > 1: |
|
out = self.merge_multi_scale_predictions(outs) |
|
else: |
|
out = outs[0] |
|
return out |
|
|
|
def merge_multi_scale_predictions(self, outs): |
|
# default values for architectures not included in following list |
|
num_classes = 80 |
|
nms_threshold = 0.5 |
|
keep_top_k = 100 |
|
|
|
if self.__class__.__name__ in ('CascadeRCNN', 'FasterRCNN', 'MaskRCNN' |
|
): |
|
num_classes = self.bbox_head.num_classes |
|
keep_top_k = self.bbox_post_process.nms.keep_top_k |
|
nms_threshold = self.bbox_post_process.nms.nms_threshold |
|
else: |
|
raise Exception( |
|
"Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now" |
|
) |
|
|
|
final_boxes = [] |
|
all_scale_outs = paddle.concat([o['bbox'] for o in outs]).numpy() |
|
for c in range(num_classes): |
|
idxs = all_scale_outs[:, 0] == c |
|
if np.count_nonzero(idxs) == 0: |
|
continue |
|
r = nms(all_scale_outs[idxs, 1:], nms_threshold) |
|
final_boxes.append( |
|
np.concatenate([np.full((r.shape[0], 1), c), r], 1)) |
|
out = np.concatenate(final_boxes) |
|
out = np.concatenate(sorted( |
|
out, key=lambda e: e[1])[-keep_top_k:]).reshape((-1, 6)) |
|
out = { |
|
'bbox': paddle.to_tensor(out), |
|
'bbox_num': paddle.to_tensor(np.array([out.shape[0], ])) |
|
} |
|
|
|
return out |
|
|
|
def build_inputs(self, data, input_def): |
|
inputs = {} |
|
for i, k in enumerate(input_def): |
|
inputs[k] = data[i] |
|
return inputs |
|
|
|
def model_arch(self, ): |
|
pass |
|
|
|
def get_loss(self, ): |
|
raise NotImplementedError("Should implement get_loss method!") |
|
|
|
def get_pred(self, ): |
|
raise NotImplementedError("Should implement get_pred method!") |
|
|
|
@classmethod |
|
def convert_sync_batchnorm(cls, layer): |
|
layer_output = layer |
|
if getattr(layer, 'norm_type', None) == 'sync_bn': |
|
layer_output = nn.SyncBatchNorm.convert_sync_batchnorm(layer) |
|
else: |
|
for name, sublayer in layer.named_children(): |
|
layer_output.add_sublayer(name, |
|
cls.convert_sync_batchnorm(sublayer)) |
|
|
|
del layer |
|
return layer_output
|
|
|