You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

299 lines
13 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
from operator import itemgetter
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from paddle.inference import PrecisionType
from paddlers.tasks import load_model
from paddlers.utils import logging, Timer
class Predictor(object):
def __init__(self,
model_dir,
use_gpu=False,
gpu_id=0,
cpu_thread_num=1,
use_mkl=True,
mkl_thread_num=4,
use_trt=False,
use_glog=False,
memory_optimize=True,
max_trt_batch_size=1,
trt_precision_mode='float32'):
"""
创建Paddle Predictor
Args:
model_dir: 模型路径(必须是导出的部署或量化模型)。
use_gpu: 是否使用GPU,默认为False。
gpu_id: 使用GPU的ID,默认为0。
cpu_thread_num:使用cpu进行预测时的线程数,默认为1。
use_mkl: 是否使用mkldnn计算库,CPU情况下使用,默认为False。
mkl_thread_num: mkldnn计算线程数,默认为4。
use_trt: 是否使用TensorRT,默认为False。
use_glog: 是否启用glog日志, 默认为False。
memory_optimize: 是否启动内存优化,默认为True。
max_trt_batch_size: 在使用TensorRT时配置的最大batch size,默认为1。
trt_precision_mode:在使用TensorRT时采用的精度,可选值['float32', 'float16']。默认为'float32'
"""
self.model_dir = model_dir
self._model = load_model(model_dir, with_net=False)
if trt_precision_mode.lower() == 'float32':
trt_precision_mode = PrecisionType.Float32
elif trt_precision_mode.lower() == 'float16':
trt_precision_mode = PrecisionType.Float16
else:
logging.error(
"TensorRT precision mode {} is invalid. Supported modes are float32 and float16."
.format(trt_precision_mode),
exit=True)
self.predictor = self.create_predictor(
use_gpu=use_gpu,
gpu_id=gpu_id,
cpu_thread_num=cpu_thread_num,
use_mkl=use_mkl,
mkl_thread_num=mkl_thread_num,
use_trt=use_trt,
use_glog=use_glog,
memory_optimize=memory_optimize,
max_trt_batch_size=max_trt_batch_size,
trt_precision_mode=trt_precision_mode)
self.timer = Timer()
def create_predictor(self,
use_gpu=True,
gpu_id=0,
cpu_thread_num=1,
use_mkl=True,
mkl_thread_num=4,
use_trt=False,
use_glog=False,
memory_optimize=True,
max_trt_batch_size=1,
trt_precision_mode=PrecisionType.Float32):
config = Config(
osp.join(self.model_dir, 'model.pdmodel'),
osp.join(self.model_dir, 'model.pdiparams'))
if use_gpu:
# 设置GPU初始显存(单位M)和Device ID
config.enable_use_gpu(200, gpu_id)
config.switch_ir_optim(True)
if use_trt:
if self._model.model_type == 'segmenter':
logging.warning(
"Semantic segmentation models do not support TensorRT acceleration, "
"TensorRT is forcibly disabled.")
elif 'RCNN' in self._model.__class__.__name__:
logging.warning(
"RCNN models do not support TensorRT acceleration, "
"TensorRT is forcibly disabled.")
else:
config.enable_tensorrt_engine(
workspace_size=1 << 10,
max_batch_size=max_trt_batch_size,
min_subgraph_size=3,
precision_mode=trt_precision_mode,
use_static=False,
use_calib_mode=False)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(cpu_thread_num)
if use_mkl:
if self._model.__class__.__name__ == 'MaskRCNN':
logging.warning(
"MaskRCNN does not support MKL-DNN, MKL-DNN is forcibly disabled"
)
else:
try:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
config.set_cpu_math_library_num_threads(mkl_thread_num)
except Exception as e:
logging.warning(
"The current environment does not support MKL-DNN, MKL-DNN is disabled."
)
pass
if not use_glog:
config.disable_glog_info()
if memory_optimize:
config.enable_memory_optim()
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
return predictor
def preprocess(self, images, transforms):
preprocessed_samples = self._model._preprocess(
images, transforms, to_tensor=False)
if self._model.model_type == 'classifier':
preprocessed_samples = {'image': preprocessed_samples[0]}
elif self._model.model_type == 'segmenter':
preprocessed_samples = {
'image': preprocessed_samples[0],
'ori_shape': preprocessed_samples[1]
}
elif self._model.model_type == 'detector':
pass
elif self._model.model_type == 'changedetector':
preprocessed_samples = {
'image': preprocessed_samples[0],
'image2': preprocessed_samples[1],
'ori_shape': preprocessed_samples[2]
}
else:
logging.error(
"Invalid model type {}".format(self._model.model_type),
exit=True)
return preprocessed_samples
def postprocess(self, net_outputs, topk=1, ori_shape=None, transforms=None):
if self._model.model_type == 'classifier':
true_topk = min(self._model.num_classes, topk)
if self._model._postprocess is None:
self._model.build_postprocess_from_labels(topk)
# XXX: Convert ndarray to tensor as self._model._postprocess requires
net_outputs = paddle.to_tensor(net_outputs)
assert net_outputs.shape[1] == 1
outputs = self._model._postprocess(net_outputs.squeeze(1))
class_ids = map(itemgetter('class_ids'), outputs)
scores = map(itemgetter('scores'), outputs)
label_names = map(itemgetter('label_names'), outputs)
preds = [{
'class_ids_map': l,
'scores_map': s,
'label_names_map': n,
} for l, s, n in zip(class_ids, scores, label_names)]
elif self._model.model_type in ('segmenter', 'changedetector'):
label_map, score_map = self._model._postprocess(
net_outputs,
batch_origin_shape=ori_shape,
transforms=transforms.transforms)
preds = [{
'label_map': l,
'score_map': s
} for l, s in zip(label_map, score_map)]
elif self._model.model_type == 'detector':
net_outputs = {
k: v
for k, v in zip(['bbox', 'bbox_num', 'mask'], net_outputs)
}
preds = self._model._postprocess(net_outputs)
else:
logging.error(
"Invalid model type {}.".format(self._model.model_type),
exit=True)
return preds
def raw_predict(self, inputs):
""" 接受预处理过后的数据进行预测
Args:
inputs(dict): 预处理过后的数据
"""
input_names = self.predictor.get_input_names()
for name in input_names:
input_tensor = self.predictor.get_input_handle(name)
input_tensor.copy_from_cpu(inputs[name])
self.predictor.run()
output_names = self.predictor.get_output_names()
net_outputs = list()
for name in output_names:
output_tensor = self.predictor.get_output_handle(name)
net_outputs.append(output_tensor.copy_to_cpu())
return net_outputs
def _run(self, images, topk=1, transforms=None):
self.timer.preprocess_time_s.start()
preprocessed_input = self.preprocess(images, transforms)
self.timer.preprocess_time_s.end(iter_num=len(images))
self.timer.inference_time_s.start()
net_outputs = self.raw_predict(preprocessed_input)
self.timer.inference_time_s.end(iter_num=1)
self.timer.postprocess_time_s.start()
results = self.postprocess(
net_outputs,
topk,
ori_shape=preprocessed_input.get('ori_shape', None),
transforms=transforms)
self.timer.postprocess_time_s.end(iter_num=len(images))
return results
def predict(self,
img_file,
topk=1,
transforms=None,
warmup_iters=0,
repeats=1):
""" 图片预测
Args:
img_file(List[str or tuple or np.ndarray], str, tuple, or np.ndarray):
对于场景分类、图像复原、目标检测和语义分割任务来说,该参数可为单一图像路径,或是解码后的、排列格式为(H, W, C)
且具有float32类型的BGR图像(表示为numpy的ndarray形式),或者是一组图像路径或np.ndarray对象构成的列表;对于变化检测
任务来说,该参数可以为图像路径二元组(分别表示前后两个时相影像路径),或是两幅图像组成的二元组,或者是上述两种二元组
之一构成的列表。
topk(int): 场景分类模型预测时使用,表示预测前topk的结果。默认值为1。
transforms (paddlers.transforms): 数据预处理操作。默认值为None, 即使用`model.yml`中保存的数据预处理操作。
warmup_iters (int): 预热轮数,用于评估模型推理以及前后处理速度。若大于1,会预先重复预测warmup_iters,而后才开始正式的预测及其速度评估。默认为0。
repeats (int): 重复次数,用于评估模型推理以及前后处理速度。若大于1,会预测repeats次取时间平均值。默认值为1。
"""
if repeats < 1:
logging.error("`repeats` must be greater than 1.", exit=True)
if transforms is None and not hasattr(self._model, 'test_transforms'):
raise Exception("Transforms need to be defined, now is None.")
if transforms is None:
transforms = self._model.test_transforms
if isinstance(img_file, tuple) and len(img_file) != 2:
raise ValueError(
f"A change detection model accepts exactly two input images, but there are {len(img_file)}."
)
if isinstance(img_file, (str, np.ndarray, tuple)):
images = [img_file]
else:
images = img_file
for _ in range(warmup_iters):
self._run(images=images, topk=topk, transforms=transforms)
self.timer.reset()
for _ in range(repeats):
results = self._run(images=images, topk=topk, transforms=transforms)
self.timer.repeats = repeats
self.timer.img_num = len(images)
self.timer.info(average=True)
if isinstance(img_file, (str, np.ndarray, tuple)):
results = results[0]
return results
def batch_predict(self, image_list, **params):
return self.predict(img_file=image_list, **params)