You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

92 lines
2.9 KiB

# Refer https://github.com/intel-isl/MiDaS
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
"""
import numpy as np
import paddle
import paddle.nn as nn
from .blocks import FeatureFusionBlock, _make_encoder
class BaseModel(paddle.nn.Layer):
def load(self, path):
"""Load model from file.
Args:
path (str): file path
"""
parameters = paddle.load(path)
self.set_dict(parameters)
class MidasNet(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=256, non_negative=True):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet, self).__init__()
use_pretrained = False if path is None else True
self.pretrained, self.scratch = _make_encoder(
backbone="resnext101_wsl",
features=features,
use_pretrained=use_pretrained)
self.scratch.refinenet4 = FeatureFusionBlock(features)
self.scratch.refinenet3 = FeatureFusionBlock(features)
self.scratch.refinenet2 = FeatureFusionBlock(features)
self.scratch.refinenet1 = FeatureFusionBlock(features)
output_conv = [
nn.Conv2D(features, 128, kernel_size=3, stride=1, padding=1),
nn.Upsample(scale_factor=2, mode="bilinear"),
nn.Conv2D(128, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2D(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU() if non_negative else nn.Identity(),
]
if non_negative:
output_conv.append(nn.ReLU())
self.scratch.output_conv = nn.Sequential(*output_conv)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return paddle.squeeze(out, axis=1)