You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
12 KiB
296 lines
12 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# This code is based on https://github.com/Z-Zheng/FarSeg |
|
# The copyright of Z-Zheng/FarSeg is as follows: |
|
# Apache License (see https://github.com/Z-Zheng/FarSeg/blob/master/LICENSE for details). |
|
|
|
import math |
|
|
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.vision.models import resnet |
|
|
|
from paddlers.models.ppdet.modeling import initializer as init |
|
|
|
|
|
class FPNConvBlock(nn.Conv2D): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1): |
|
super(FPNConvBlock, self).__init__( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=dilation * (kernel_size - 1) // 2, |
|
dilation=dilation) |
|
init.kaiming_uniform_(self.weight, a=1) |
|
init.constant_(self.bias, value=0) |
|
|
|
|
|
class DefaultConvBlock(nn.Conv2D): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
bias_attr=None): |
|
super(DefaultConvBlock, self).__init__( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
bias_attr=bias_attr) |
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
if self.bias is not None: |
|
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) |
|
bound = 1 / math.sqrt(fan_in) |
|
init.uniform_(self.bias, -bound, bound) |
|
|
|
|
|
class ResNetEncoder(nn.Layer): |
|
def __init__(self, backbone='resnet50', in_channels=3, pretrained=True): |
|
super(ResNetEncoder, self).__init__() |
|
self.resnet = getattr(resnet, backbone)(pretrained=pretrained) |
|
if in_channels != 3: |
|
self.resnet.conv1 = nn.Conv2D( |
|
in_channels, 64, 7, stride=2, padding=3, bias_attr=False) |
|
|
|
for layer in self.resnet.sublayers(): |
|
if isinstance(layer, (nn.BatchNorm2D, nn.SyncBatchNorm)): |
|
layer._momentum = 0.1 |
|
|
|
def forward(self, x): |
|
x = self.resnet.conv1(x) |
|
x = self.resnet.bn1(x) |
|
x = self.resnet.relu(x) |
|
x = self.resnet.maxpool(x) |
|
|
|
c2 = self.resnet.layer1(x) |
|
c3 = self.resnet.layer2(c2) |
|
c4 = self.resnet.layer3(c3) |
|
c5 = self.resnet.layer4(c4) |
|
|
|
return [c2, c3, c4, c5] |
|
|
|
|
|
class FPN(nn.Layer): |
|
def __init__(self, in_channels_list, out_channels, conv_block=FPNConvBlock): |
|
super(FPN, self).__init__() |
|
|
|
inner_blocks = [] |
|
layer_blocks = [] |
|
for idx, in_channels in enumerate(in_channels_list, 1): |
|
if in_channels == 0: |
|
continue |
|
inner_blocks.append(conv_block(in_channels, out_channels, 1)) |
|
layer_blocks.append(conv_block(out_channels, out_channels, 3, 1)) |
|
self.inner_blocks = nn.LayerList(inner_blocks) |
|
self.layer_blocks = nn.LayerList(layer_blocks) |
|
|
|
def forward(self, x): |
|
last_inner = self.inner_blocks[-1](x[-1]) |
|
results = [self.layer_blocks[-1](last_inner)] |
|
for i, feature in enumerate(x[-2::-1]): |
|
inner_block = self.inner_blocks[len(self.inner_blocks) - 2 - i] |
|
layer_block = self.layer_blocks[len(self.layer_blocks) - 2 - i] |
|
inner_top_down = F.interpolate( |
|
last_inner, scale_factor=2, mode="nearest") |
|
inner_lateral = inner_block(feature) |
|
last_inner = inner_lateral + inner_top_down |
|
results.insert(0, layer_block(last_inner)) |
|
return tuple(results) |
|
|
|
|
|
class FSRelation(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
channels_list, |
|
out_channels, |
|
scale_aware_proj=True, |
|
conv_block=DefaultConvBlock): |
|
super(FSRelation, self).__init__() |
|
|
|
self.scale_aware_proj = scale_aware_proj |
|
if self.scale_aware_proj: |
|
self.scene_encoder = nn.LayerList([ |
|
nn.Sequential( |
|
conv_block(in_channels, out_channels, 1), |
|
nn.ReLU(), conv_block(out_channels, out_channels, 1)) |
|
for _ in range(len(channels_list)) |
|
]) |
|
else: |
|
self.scene_encoder = nn.Sequential( |
|
conv_block(in_channels, out_channels, 1), |
|
nn.ReLU(), conv_block(out_channels, out_channels, 1)) |
|
|
|
self.content_encoders = nn.LayerList() |
|
self.feature_reencoders = nn.LayerList() |
|
for channel in channels_list: |
|
self.content_encoders.append( |
|
nn.Sequential( |
|
conv_block( |
|
channel, out_channels, 1, bias_attr=True), |
|
nn.BatchNorm2D( |
|
out_channels, momentum=0.1), |
|
nn.ReLU())) |
|
self.feature_reencoders.append( |
|
nn.Sequential( |
|
conv_block( |
|
channel, out_channels, 1, bias_attr=True), |
|
nn.BatchNorm2D( |
|
out_channels, momentum=0.1), |
|
nn.ReLU())) |
|
|
|
self.normalizer = nn.Sigmoid() |
|
|
|
def forward(self, scene_feature, feature_list): |
|
content_feats = [ |
|
c_en(p_feat) |
|
for c_en, p_feat in zip(self.content_encoders, feature_list) |
|
] |
|
if self.scale_aware_proj: |
|
scene_feats = [op(scene_feature) for op in self.scene_encoder] |
|
relations = [ |
|
self.normalizer((sf * cf).sum(axis=1, keepdim=True)) |
|
for sf, cf in zip(scene_feats, content_feats) |
|
] |
|
else: |
|
scene_feat = self.scene_encoder(scene_feature) |
|
relations = [ |
|
self.normalizer((scene_feat * cf).sum(axis=1, keepdim=True)) |
|
for cf in content_feats |
|
] |
|
p_feats = [ |
|
op(p_feat) |
|
for op, p_feat in zip(self.feature_reencoders, feature_list) |
|
] |
|
refined_feats = [r * p for r, p in zip(relations, p_feats)] |
|
return refined_feats |
|
|
|
|
|
class AsymmetricDecoder(nn.Layer): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
in_feature_output_strides=(4, 8, 16, 32), |
|
out_feature_output_stride=4, |
|
conv_block=DefaultConvBlock): |
|
super(AsymmetricDecoder, self).__init__() |
|
|
|
self.blocks = nn.LayerList() |
|
for in_feature_output_stride in in_feature_output_strides: |
|
num_upsample = int(math.log2(int(in_feature_output_stride))) - int( |
|
math.log2(int(out_feature_output_stride))) |
|
num_layers = num_upsample if num_upsample != 0 else 1 |
|
self.blocks.append( |
|
nn.Sequential(*[ |
|
nn.Sequential( |
|
conv_block( |
|
in_channels if idx == 0 else out_channels, |
|
out_channels, |
|
3, |
|
1, |
|
1, |
|
bias_attr=False), |
|
nn.BatchNorm2D( |
|
out_channels, momentum=0.1), |
|
nn.ReLU(), |
|
nn.UpsamplingBilinear2D(scale_factor=2) if num_upsample |
|
!= 0 else nn.Identity(), ) for idx in range(num_layers) |
|
])) |
|
|
|
def forward(self, feature_list): |
|
inner_feature_list = [] |
|
for idx, block in enumerate(self.blocks): |
|
decoder_feature = block(feature_list[idx]) |
|
inner_feature_list.append(decoder_feature) |
|
out_feature = sum(inner_feature_list) / len(inner_feature_list) |
|
return out_feature |
|
|
|
|
|
class FarSeg(nn.Layer): |
|
""" |
|
The FarSeg implementation based on PaddlePaddle. |
|
|
|
The original article refers to |
|
Zheng Z, Zhong Y, Wang J, et al. Foreground-aware relation network for geospatial object segmentation in |
|
high spatial resolution remote sensing imagery[C]//Proceedings of the IEEE/CVF conference on computer vision |
|
and pattern recognition. 2020: 4096-4105. |
|
|
|
Args: |
|
in_channels (int): Number of input channels. |
|
num_classes (int): Unique number of target classes. |
|
backbone (str, optional): Backbone network, one of models available in `paddle.vision.models.resnet`. Default: resnet50. |
|
backbone_pretrained (bool, optional): Whether the backbone network uses IMAGENET pretrained weights. Default: True. |
|
fpn_out_channels (int, optional): Number of channels output by the feature pyramid network. Default: 256. |
|
fsr_out_channels (int, optional): Number of channels output by the F-S relation module. Default: 256. |
|
scale_aware_proj (bool, optional): Whether to use scale awareness in F-S relation module. Default: True. |
|
decoder_out_channels (int, optional): Number of channels output by the decoder. Default: 128. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
num_classes, |
|
backbone='resnet50', |
|
backbone_pretrained=True, |
|
fpn_out_channels=256, |
|
fsr_out_channels=256, |
|
scale_aware_proj=True, |
|
decoder_out_channels=128): |
|
super(FarSeg, self).__init__() |
|
|
|
backbone = backbone.lower() |
|
self.encoder = ResNetEncoder( |
|
backbone=backbone, |
|
in_channels=in_channels, |
|
pretrained=backbone_pretrained) |
|
|
|
fpn_max_in_channels = 2048 |
|
if backbone in ['resnet18', 'resnet34']: |
|
fpn_max_in_channels = 512 |
|
self.fpn = FPN(in_channels_list=[ |
|
fpn_max_in_channels // (2**(3 - i)) for i in range(4) |
|
], |
|
out_channels=fpn_out_channels) |
|
self.gap = nn.AdaptiveAvgPool2D(1) |
|
self.fsr = FSRelation( |
|
in_channels=fpn_max_in_channels, |
|
channels_list=[fpn_out_channels] * 4, |
|
out_channels=fsr_out_channels, |
|
scale_aware_proj=scale_aware_proj) |
|
|
|
self.decoder = AsymmetricDecoder( |
|
in_channels=fsr_out_channels, out_channels=decoder_out_channels) |
|
|
|
self.cls_head = nn.Sequential( |
|
DefaultConvBlock(decoder_out_channels, num_classes, 1), |
|
nn.UpsamplingBilinear2D(scale_factor=4)) |
|
|
|
def forward(self, x): |
|
feature_list = self.encoder(x) |
|
|
|
fpn_feature_list = self.fpn(feature_list) |
|
scene_feature = self.gap(feature_list[-1]) |
|
refined_feature_list = self.fsr(scene_feature, fpn_feature_list) |
|
|
|
feature = self.decoder(refined_feature_list) |
|
logit = self.cls_head(feature) |
|
return [logit]
|
|
|