You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

141 lines
5.4 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlers.models.ppdet.modeling import \
initializer as init
from paddlers.rs_models.seg.farseg import FPN, \
ResNetEncoder,AsymmetricDecoder
def conv_with_kaiming_uniform(use_gn=False, use_relu=False):
def make_conv(in_channels, out_channels, kernel_size, stride=1, dilation=1):
conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=dilation * (kernel_size - 1) // 2,
dilation=dilation,
bias_attr=False if use_gn else True)
init.kaiming_uniform_(conv.weight, a=1)
if not use_gn:
init.constant_(conv.bias, 0)
module = [conv, ]
if use_gn:
raise NotImplementedError
if use_relu:
module.append(nn.ReLU())
if len(module) > 1:
return nn.Sequential(*module)
return conv
return make_conv
default_conv_block = conv_with_kaiming_uniform(use_gn=False, use_relu=False)
class FactSeg(nn.Layer):
"""
The FactSeg implementation based on PaddlePaddle.
The original article refers to
A. Ma, J. Wang, Y. Zhong and Z. Zheng, "FactSeg: Foreground Activation
-Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing
Imagery,"in IEEE Transactions on Geoscience and Remote Sensing, vol. 60,
pp. 1-16, 2022, Art no. 5606216.
Args:
in_channels (int): The number of image channels for the input model.
num_classes (int): The unique number of target classes.
backbone (str, optional): A backbone network, models available in
`paddle.vision.models.resnet`. Default: resnet50.
backbone_pretrained (bool, optional): Whether the backbone network uses
IMAGENET pretrained weights. Default: True.
"""
def __init__(self,
in_channels,
num_classes,
backbone='resnet50',
backbone_pretrained=True):
super(FactSeg, self).__init__()
backbone = backbone.lower()
self.resencoder = ResNetEncoder(
backbone=backbone,
in_channels=in_channels,
pretrained=backbone_pretrained)
self.resencoder.resnet._sub_layers.pop('fc')
self.fgfpn = FPN(in_channels_list=[256, 512, 1024, 2048],
out_channels=256,
conv_block=default_conv_block)
self.bifpn = FPN(in_channels_list=[256, 512, 1024, 2048],
out_channels=256,
conv_block=default_conv_block)
self.fg_decoder = AsymmetricDecoder(
in_channels=256,
out_channels=128,
in_feature_output_strides=(4, 8, 16, 32),
out_feature_output_stride=4,
conv_block=nn.Conv2D)
self.bi_decoder = AsymmetricDecoder(
in_channels=256,
out_channels=128,
in_feature_output_strides=(4, 8, 16, 32),
out_feature_output_stride=4,
conv_block=nn.Conv2D)
self.fg_cls = nn.Conv2D(128, num_classes, kernel_size=1)
self.bi_cls = nn.Conv2D(128, 1, kernel_size=1)
self.config_loss = ['joint_loss']
self.config_foreground = []
self.fbattention_atttention = False
def forward(self, x):
feat_list = self.resencoder(x)
if 'skip_decoder' in []:
fg_out = self.fgskip_deocder(feat_list)
bi_out = self.bgskip_deocder(feat_list)
else:
forefeat_list = list(self.fgfpn(feat_list))
binaryfeat_list = self.bifpn(feat_list)
if self.fbattention_atttention:
for i in range(len(binaryfeat_list)):
forefeat_list[i] = self.fbatt_block_list[i](
binaryfeat_list[i], forefeat_list[i])
fg_out = self.fg_decoder(forefeat_list)
bi_out = self.bi_decoder(binaryfeat_list)
fg_pred = self.fg_cls(fg_out)
bi_pred = self.bi_cls(bi_out)
fg_pred = F.interpolate(
fg_pred, scale_factor=4.0, mode='bilinear', align_corners=True)
bi_pred = F.interpolate(
bi_pred, scale_factor=4.0, mode='bilinear', align_corners=True)
if self.training:
return [fg_pred]
else:
binary_prob = F.sigmoid(bi_pred)
cls_prob = F.softmax(fg_pred, axis=1)
cls_prob[:, 0, :, :] = cls_prob[:, 0, :, :] * (
1 - binary_prob).squeeze(axis=1)
cls_prob[:, 1:, :, :] = cls_prob[:, 1:, :, :] * binary_prob
z = paddle.sum(cls_prob, axis=1)
z = z.unsqueeze(axis=1)
cls_prob = paddle.divide(cls_prob, z)
return [cls_prob]