You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

103 lines
3.5 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .layers import make_norm, Conv3x3, CBAM
from .stanet import Backbone, Decoder
class DSAMNet(nn.Layer):
"""
The DSAMNet implementation based on PaddlePaddle.
The original article refers to
Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an
Open Aerial Image Dataset for Remote Sensing Change Detection"
(https://ieeexplore.ieee.org/document/9467555).
Note that this implementation differs from the original work in two aspects:
1. We do not use multiple dilation rates in layer 4 of the ResNet backbone.
2. A classification head is used in place of the original metric learning-based
head to stablize the training process.
Args:
in_channels (int): Number of bands of the input images.
num_classes (int): Number of target classes.
ca_ratio (int, optional): Channel reduction ratio for the channel
attention module. Default: 8.
sa_kernel (int, optional): Size of the convolutional kernel used in the
spatial attention module. Default: 7.
"""
def __init__(self, in_channels, num_classes, ca_ratio=8, sa_kernel=7):
super(DSAMNet, self).__init__()
WIDTH = 64
self.backbone = Backbone(
in_ch=in_channels, arch='resnet18', strides=(1, 1, 2, 2, 1))
self.decoder = Decoder(WIDTH)
self.cbam1 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
self.cbam2 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
self.dsl2 = DSLayer(64, num_classes, 32, stride=2, output_padding=1)
self.dsl3 = DSLayer(128, num_classes, 32, stride=4, output_padding=3)
self.conv_out = nn.Sequential(
Conv3x3(
WIDTH, WIDTH, norm=True, act=True),
Conv3x3(WIDTH, num_classes))
self.init_weight()
def forward(self, t1, t2):
f1 = self.backbone(t1)
f2 = self.backbone(t2)
y1 = self.decoder(f1)
y2 = self.decoder(f2)
y1 = self.cbam1(y1)
y2 = self.cbam2(y2)
out = paddle.abs(y1 - y2)
out = F.interpolate(
out, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True)
pred = self.conv_out(out)
if not self.training:
return [pred]
else:
ds2 = self.dsl2(paddle.abs(f1[0] - f2[0]))
ds3 = self.dsl3(paddle.abs(f1[1] - f2[1]))
return [pred, ds2, ds3]
def init_weight(self):
pass
class DSLayer(nn.Sequential):
def __init__(self, in_ch, out_ch, itm_ch, **convd_kwargs):
super(DSLayer, self).__init__(
nn.Conv2DTranspose(
in_ch, itm_ch, kernel_size=3, padding=1, **convd_kwargs),
make_norm(itm_ch),
nn.ReLU(),
nn.Dropout2D(p=0.2),
nn.Conv2DTranspose(
itm_ch, out_ch, kernel_size=3, padding=1))