You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

266 lines
9.6 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is the paddle implementation of MobileOne block, see: https://arxiv.org/pdf/2206.04040.pdf.
Some codes are based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
Ths copyright of microsoft/Swin-Transformer is as follows:
MIT License [see LICENSE for details]
"""
import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant
from paddlers.models.ppdet.modeling.ops import get_act_fn
from paddlers.models.ppdet.modeling.layers import ConvNormLayer
class MobileOneBlock(nn.Layer):
def __init__(
self,
ch_in,
ch_out,
stride,
kernel_size,
conv_num=1,
norm_type='bn',
norm_decay=0.,
norm_groups=32,
bias_on=False,
lr_scale=1.,
freeze_norm=False,
initializer=Normal(
mean=0., std=0.01),
skip_quant=False,
act='relu', ):
super(MobileOneBlock, self).__init__()
self.ch_in = ch_in
self.ch_out = ch_out
self.kernel_size = kernel_size
self.stride = stride
self.padding = (kernel_size - 1) // 2
self.k = conv_num
self.depth_conv = nn.LayerList()
self.point_conv = nn.LayerList()
for _ in range(self.k):
self.depth_conv.append(
ConvNormLayer(
ch_in,
ch_in,
kernel_size,
stride=stride,
groups=ch_in,
norm_type=norm_type,
norm_decay=norm_decay,
norm_groups=norm_groups,
bias_on=bias_on,
lr_scale=lr_scale,
freeze_norm=freeze_norm,
initializer=initializer,
skip_quant=skip_quant))
self.point_conv.append(
ConvNormLayer(
ch_in,
ch_out,
1,
stride=1,
groups=1,
norm_type=norm_type,
norm_decay=norm_decay,
norm_groups=norm_groups,
bias_on=bias_on,
lr_scale=lr_scale,
freeze_norm=freeze_norm,
initializer=initializer,
skip_quant=skip_quant))
self.rbr_1x1 = ConvNormLayer(
ch_in,
ch_in,
1,
stride=self.stride,
groups=ch_in,
norm_type=norm_type,
norm_decay=norm_decay,
norm_groups=norm_groups,
bias_on=bias_on,
lr_scale=lr_scale,
freeze_norm=freeze_norm,
initializer=initializer,
skip_quant=skip_quant)
self.rbr_identity_st1 = nn.BatchNorm2D(
num_features=ch_in,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(
0.0))) if ch_in == ch_out and self.stride == 1 else None
self.rbr_identity_st2 = nn.BatchNorm2D(
num_features=ch_out,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(
0.0))) if ch_in == ch_out and self.stride == 1 else None
self.act = get_act_fn(act) if act is None or isinstance(act, (
str, dict)) else act
def forward(self, x):
if hasattr(self, "conv1") and hasattr(self, "conv2"):
y = self.act(self.conv2(self.act(self.conv1(x))))
else:
if self.rbr_identity_st1 is None:
id_out_st1 = 0
else:
id_out_st1 = self.rbr_identity_st1(x)
x1_1 = 0
for i in range(self.k):
x1_1 += self.depth_conv[i](x)
x1_2 = self.rbr_1x1(x)
x1 = self.act(x1_1 + x1_2 + id_out_st1)
if self.rbr_identity_st2 is None:
id_out_st2 = 0
else:
id_out_st2 = self.rbr_identity_st2(x1)
x2_1 = 0
for i in range(self.k):
x2_1 += self.point_conv[i](x1)
y = self.act(x2_1 + id_out_st2)
return y
def convert_to_deploy(self):
if not hasattr(self, 'conv1'):
self.conv1 = nn.Conv2D(
in_channels=self.ch_in,
out_channels=self.ch_in,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
groups=self.ch_in,
bias_attr=ParamAttr(
initializer=Constant(value=0.), learning_rate=1.))
if not hasattr(self, 'conv2'):
self.conv2 = nn.Conv2D(
in_channels=self.ch_in,
out_channels=self.ch_out,
kernel_size=1,
stride=1,
padding='SAME',
groups=1,
bias_attr=ParamAttr(
initializer=Constant(value=0.), learning_rate=1.))
conv1_kernel, conv1_bias, conv2_kernel, conv2_bias = self.get_equivalent_kernel_bias(
)
self.conv1.weight.set_value(conv1_kernel)
self.conv1.bias.set_value(conv1_bias)
self.conv2.weight.set_value(conv2_kernel)
self.conv2.bias.set_value(conv2_bias)
self.__delattr__('depth_conv')
self.__delattr__('point_conv')
self.__delattr__('rbr_1x1')
if hasattr(self, 'rbr_identity_st1'):
self.__delattr__('rbr_identity_st1')
if hasattr(self, 'rbr_identity_st2'):
self.__delattr__('rbr_identity_st2')
def get_equivalent_kernel_bias(self):
st1_kernel3x3, st1_bias3x3 = self._fuse_bn_tensor(self.depth_conv)
st1_kernel1x1, st1_bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
st1_kernelid, st1_biasid = self._fuse_bn_tensor(
self.rbr_identity_st1, kernel_size=self.kernel_size)
st2_kernel1x1, st2_bias1x1 = self._fuse_bn_tensor(self.point_conv)
st2_kernelid, st2_biasid = self._fuse_bn_tensor(
self.rbr_identity_st2, kernel_size=1)
conv1_kernel = st1_kernel3x3 + self._pad_1x1_to_3x3_tensor(
st1_kernel1x1) + st1_kernelid
conv1_bias = st1_bias3x3 + st1_bias1x1 + st1_biasid
conv2_kernel = st2_kernel1x1 + st2_kernelid
conv2_bias = st2_bias1x1 + st2_biasid
return conv1_kernel, conv1_bias, conv2_kernel, conv2_bias
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
padding_size = (self.kernel_size - 1) // 2
return nn.functional.pad(
kernel1x1,
[padding_size, padding_size, padding_size, padding_size])
def _fuse_bn_tensor(self, branch, kernel_size=3):
if branch is None:
return 0, 0
if isinstance(branch, nn.LayerList):
fused_kernels = []
fused_bias = []
for block in branch:
kernel = block.conv.weight
running_mean = block.norm._mean
running_var = block.norm._variance
gamma = block.norm.weight
beta = block.norm.bias
eps = block.norm._epsilon
std = (running_var + eps).sqrt()
t = (gamma / std).reshape((-1, 1, 1, 1))
fused_kernels.append(kernel * t)
fused_bias.append(beta - running_mean * gamma / std)
return sum(fused_kernels), sum(fused_bias)
elif isinstance(branch, ConvNormLayer):
kernel = branch.conv.weight
running_mean = branch.norm._mean
running_var = branch.norm._variance
gamma = branch.norm.weight
beta = branch.norm.bias
eps = branch.norm._epsilon
else:
assert isinstance(branch, nn.BatchNorm2D)
input_dim = self.ch_in if kernel_size == 1 else 1
kernel_value = paddle.zeros(
shape=[self.ch_in, input_dim, kernel_size, kernel_size],
dtype='float32')
if kernel_size > 1:
for i in range(self.ch_in):
kernel_value[i, i % input_dim, (kernel_size - 1) // 2, (
kernel_size - 1) // 2] = 1
elif kernel_size == 1:
for i in range(self.ch_in):
kernel_value[i, i % input_dim, 0, 0] = 1
else:
raise ValueError("Invalid kernel size recieved!")
kernel = paddle.to_tensor(kernel_value, place=branch.weight.place)
running_mean = branch._mean
running_var = branch._variance
gamma = branch.weight
beta = branch.bias
eps = branch._epsilon
std = (running_var + eps).sqrt()
t = (gamma / std).reshape((-1, 1, 1, 1))
return kernel * t, beta - running_mean * gamma / std