You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
6.6 KiB
169 lines
6.6 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import platform |
|
import paddle |
|
from ppcls.utils import logger |
|
|
|
|
|
def retrieval_eval(engine, epoch_id=0): |
|
engine.model.eval() |
|
# step1. build gallery |
|
if engine.gallery_query_dataloader is not None: |
|
gallery_feas, gallery_img_id, gallery_unique_id = cal_feature( |
|
engine, name='gallery_query') |
|
query_feas, query_img_id, query_query_id = gallery_feas, gallery_img_id, gallery_unique_id |
|
else: |
|
gallery_feas, gallery_img_id, gallery_unique_id = cal_feature( |
|
engine, name='gallery') |
|
query_feas, query_img_id, query_query_id = cal_feature( |
|
engine, name='query') |
|
|
|
# step2. do evaluation |
|
sim_block_size = engine.config["Global"].get("sim_block_size", 64) |
|
sections = [sim_block_size] * (len(query_feas) // sim_block_size) |
|
if len(query_feas) % sim_block_size: |
|
sections.append(len(query_feas) % sim_block_size) |
|
fea_blocks = paddle.split(query_feas, num_or_sections=sections) |
|
if query_query_id is not None: |
|
query_id_blocks = paddle.split(query_query_id, num_or_sections=sections) |
|
image_id_blocks = paddle.split(query_img_id, num_or_sections=sections) |
|
metric_key = None |
|
|
|
if engine.eval_loss_func is None: |
|
metric_dict = {metric_key: 0.} |
|
else: |
|
metric_dict = dict() |
|
for block_idx, block_fea in enumerate(fea_blocks): |
|
similarity_matrix = paddle.matmul( |
|
block_fea, gallery_feas, transpose_y=True) |
|
if query_query_id is not None: |
|
query_id_block = query_id_blocks[block_idx] |
|
query_id_mask = (query_id_block != gallery_unique_id.t()) |
|
|
|
image_id_block = image_id_blocks[block_idx] |
|
image_id_mask = (image_id_block != gallery_img_id.t()) |
|
|
|
keep_mask = paddle.logical_or(query_id_mask, image_id_mask) |
|
similarity_matrix = similarity_matrix * keep_mask.astype( |
|
"float32") |
|
else: |
|
keep_mask = None |
|
|
|
metric_tmp = engine.eval_metric_func(similarity_matrix, |
|
image_id_blocks[block_idx], |
|
gallery_img_id, keep_mask) |
|
|
|
for key in metric_tmp: |
|
if key not in metric_dict: |
|
metric_dict[key] = metric_tmp[key] * block_fea.shape[ |
|
0] / len(query_feas) |
|
else: |
|
metric_dict[key] += metric_tmp[key] * block_fea.shape[ |
|
0] / len(query_feas) |
|
|
|
metric_info_list = [] |
|
for key in metric_dict: |
|
if metric_key is None: |
|
metric_key = key |
|
metric_info_list.append("{}: {:.5f}".format(key, metric_dict[key])) |
|
metric_msg = ", ".join(metric_info_list) |
|
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg)) |
|
|
|
return metric_dict[metric_key] |
|
|
|
|
|
def cal_feature(engine, name='gallery'): |
|
all_feas = None |
|
all_image_id = None |
|
all_unique_id = None |
|
has_unique_id = False |
|
|
|
if name == 'gallery': |
|
dataloader = engine.gallery_dataloader |
|
elif name == 'query': |
|
dataloader = engine.query_dataloader |
|
elif name == 'gallery_query': |
|
dataloader = engine.gallery_query_dataloader |
|
else: |
|
raise RuntimeError("Only support gallery or query dataset") |
|
|
|
max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len( |
|
dataloader) |
|
for idx, batch in enumerate(dataloader): # load is very time-consuming |
|
if idx >= max_iter: |
|
break |
|
if idx % engine.config["Global"]["print_batch_step"] == 0: |
|
logger.info( |
|
f"{name} feature calculation process: [{idx}/{len(dataloader)}]") |
|
if engine.use_dali: |
|
batch = [ |
|
paddle.to_tensor(batch[0]['data']), |
|
paddle.to_tensor(batch[0]['label']) |
|
] |
|
batch = [paddle.to_tensor(x) for x in batch] |
|
batch[1] = batch[1].reshape([-1, 1]).astype("int64") |
|
if len(batch) == 3: |
|
has_unique_id = True |
|
batch[2] = batch[2].reshape([-1, 1]).astype("int64") |
|
out = engine.model(batch[0], batch[1]) |
|
if "Student" in out: |
|
out = out["Student"] |
|
batch_feas = out["features"] |
|
|
|
# do norm |
|
if engine.config["Global"].get("feature_normalize", True): |
|
feas_norm = paddle.sqrt( |
|
paddle.sum(paddle.square(batch_feas), axis=1, keepdim=True)) |
|
batch_feas = paddle.divide(batch_feas, feas_norm) |
|
|
|
# do binarize |
|
if engine.config["Global"].get("feature_binarize") == "round": |
|
batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0 |
|
|
|
if engine.config["Global"].get("feature_binarize") == "sign": |
|
batch_feas = paddle.sign(batch_feas).astype("float32") |
|
|
|
if all_feas is None: |
|
all_feas = batch_feas |
|
if has_unique_id: |
|
all_unique_id = batch[2] |
|
all_image_id = batch[1] |
|
else: |
|
all_feas = paddle.concat([all_feas, batch_feas]) |
|
all_image_id = paddle.concat([all_image_id, batch[1]]) |
|
if has_unique_id: |
|
all_unique_id = paddle.concat([all_unique_id, batch[2]]) |
|
|
|
if engine.use_dali: |
|
dataloader.reset() |
|
|
|
if paddle.distributed.get_world_size() > 1: |
|
feat_list = [] |
|
img_id_list = [] |
|
unique_id_list = [] |
|
paddle.distributed.all_gather(feat_list, all_feas) |
|
paddle.distributed.all_gather(img_id_list, all_image_id) |
|
all_feas = paddle.concat(feat_list, axis=0) |
|
all_image_id = paddle.concat(img_id_list, axis=0) |
|
if has_unique_id: |
|
paddle.distributed.all_gather(unique_id_list, all_unique_id) |
|
all_unique_id = paddle.concat(unique_id_list, axis=0) |
|
|
|
logger.info("Build {} done, all feat shape: {}, begin to eval..".format( |
|
name, all_feas.shape)) |
|
return all_feas, all_image_id, all_unique_id
|
|
|