# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six import types from difflib import SequenceMatcher from . import backbone def get_architectures(): """ get all of model architectures """ names = [] for k, v in backbone.__dict__.items(): if isinstance(v, (types.FunctionType, six.class_types)): names.append(k) return names def get_blacklist_model_in_static_mode(): from ppcls.arch.backbone import distilled_vision_transformer from ppcls.arch.backbone import vision_transformer blacklist = distilled_vision_transformer.__all__ + vision_transformer.__all__ return blacklist def similar_architectures(name='', names=[], thresh=0.1, topk=10): """ inferred similar architectures """ scores = [] for idx, n in enumerate(names): if n.startswith('__'): continue score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio() if score > thresh: scores.append((idx, score)) scores.sort(key=lambda x: x[1], reverse=True) similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]] return similar_names