# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn as nn import paddle.nn.functional as F class CircleMargin(nn.Layer): def __init__(self, embedding_size, class_num, margin, scale): super(CircleMargin, self).__init__() self.scale = scale self.margin = margin self.embedding_size = embedding_size self.class_num = class_num self.weight = self.create_parameter( shape=[self.embedding_size, self.class_num], is_bias=False, default_initializer=paddle.nn.initializer.XavierNormal()) def forward(self, input, label): feat_norm = paddle.sqrt( paddle.sum(paddle.square(input), axis=1, keepdim=True)) input = paddle.divide(input, feat_norm) weight_norm = paddle.sqrt( paddle.sum(paddle.square(self.weight), axis=0, keepdim=True)) weight = paddle.divide(self.weight, weight_norm) logits = paddle.matmul(input, weight) if not self.training or label is None: return logits alpha_p = paddle.clip(-logits.detach() + 1 + self.margin, min=0.) alpha_n = paddle.clip(logits.detach() + self.margin, min=0.) delta_p = 1 - self.margin delta_n = self.margin m_hot = F.one_hot(label.reshape([-1]), num_classes=logits.shape[1]) logits_p = alpha_p * (logits - delta_p) logits_n = alpha_n * (logits - delta_n) pre_logits = logits_p * m_hot + logits_n * (1 - m_hot) pre_logits = self.scale * pre_logits return pre_logits