# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import math import paddle from paddle import ParamAttr, reshape, transpose, concat, split import paddle.nn as nn from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D from paddle.nn.initializer import KaimingNormal from paddle.regularizer import L2Decay from ppcls.arch.backbone.base.theseus_layer import TheseusLayer from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "ESNet_x0_25": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams", "ESNet_x0_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams", "ESNet_x0_75": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams", "ESNet_x1_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams", } MODEL_STAGES_PATTERN = {"ESNet": ["blocks[2]", "blocks[9]", "blocks[12]"]} __all__ = list(MODEL_URLS.keys()) def channel_shuffle(x, groups): batch_size, num_channels, height, width = x.shape[0:4] channels_per_group = num_channels // groups x = reshape( x=x, shape=[batch_size, groups, channels_per_group, height, width]) x = transpose(x=x, perm=[0, 2, 1, 3, 4]) x = reshape(x=x, shape=[batch_size, num_channels, height, width]) return x def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNLayer(TheseusLayer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, if_act=True): super().__init__() self.conv = Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn = BatchNorm( out_channels, param_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) self.if_act = if_act self.hardswish = nn.Hardswish() def forward(self, x): x = self.conv(x) x = self.bn(x) if self.if_act: x = self.hardswish(x) return x class SEModule(TheseusLayer): def __init__(self, channel, reduction=4): super().__init__() self.avg_pool = AdaptiveAvgPool2D(1) self.conv1 = Conv2D( in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0) self.relu = nn.ReLU() self.conv2 = Conv2D( in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0) self.hardsigmoid = nn.Hardsigmoid() def forward(self, x): identity = x x = self.avg_pool(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.hardsigmoid(x) x = paddle.multiply(x=identity, y=x) return x class ESBlock1(TheseusLayer): def __init__(self, in_channels, out_channels): super().__init__() self.pw_1_1 = ConvBNLayer( in_channels=in_channels // 2, out_channels=out_channels // 2, kernel_size=1, stride=1) self.dw_1 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=3, stride=1, groups=out_channels // 2, if_act=False) self.se = SEModule(out_channels) self.pw_1_2 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels // 2, kernel_size=1, stride=1) def forward(self, x): x1, x2 = split( x, num_or_sections=[x.shape[1] // 2, x.shape[1] // 2], axis=1) x2 = self.pw_1_1(x2) x3 = self.dw_1(x2) x3 = concat([x2, x3], axis=1) x3 = self.se(x3) x3 = self.pw_1_2(x3) x = concat([x1, x3], axis=1) return channel_shuffle(x, 2) class ESBlock2(TheseusLayer): def __init__(self, in_channels, out_channels): super().__init__() # branch1 self.dw_1 = ConvBNLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=2, groups=in_channels, if_act=False) self.pw_1 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels // 2, kernel_size=1, stride=1) # branch2 self.pw_2_1 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels // 2, kernel_size=1) self.dw_2 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=3, stride=2, groups=out_channels // 2, if_act=False) self.se = SEModule(out_channels // 2) self.pw_2_2 = ConvBNLayer( in_channels=out_channels // 2, out_channels=out_channels // 2, kernel_size=1) self.concat_dw = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, groups=out_channels) self.concat_pw = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=1) def forward(self, x): x1 = self.dw_1(x) x1 = self.pw_1(x1) x2 = self.pw_2_1(x) x2 = self.dw_2(x2) x2 = self.se(x2) x2 = self.pw_2_2(x2) x = concat([x1, x2], axis=1) x = self.concat_dw(x) x = self.concat_pw(x) return x class ESNet(TheseusLayer): def __init__(self, stages_pattern, class_num=1000, scale=1.0, dropout_prob=0.2, class_expand=1280, return_patterns=None, return_stages=None): super().__init__() self.scale = scale self.class_num = class_num self.class_expand = class_expand stage_repeats = [3, 7, 3] stage_out_channels = [ -1, 24, make_divisible(116 * scale), make_divisible(232 * scale), make_divisible(464 * scale), 1024 ] self.conv1 = ConvBNLayer( in_channels=3, out_channels=stage_out_channels[1], kernel_size=3, stride=2) self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=1) block_list = [] for stage_id, num_repeat in enumerate(stage_repeats): for i in range(num_repeat): if i == 0: block = ESBlock2( in_channels=stage_out_channels[stage_id + 1], out_channels=stage_out_channels[stage_id + 2]) else: block = ESBlock1( in_channels=stage_out_channels[stage_id + 2], out_channels=stage_out_channels[stage_id + 2]) block_list.append(block) self.blocks = nn.Sequential(*block_list) self.conv2 = ConvBNLayer( in_channels=stage_out_channels[-2], out_channels=stage_out_channels[-1], kernel_size=1) self.avg_pool = AdaptiveAvgPool2D(1) self.last_conv = Conv2D( in_channels=stage_out_channels[-1], out_channels=self.class_expand, kernel_size=1, stride=1, padding=0, bias_attr=False) self.hardswish = nn.Hardswish() self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer") self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) self.fc = Linear(self.class_expand, self.class_num) super().init_res( stages_pattern, return_patterns=return_patterns, return_stages=return_stages) def forward(self, x): x = self.conv1(x) x = self.max_pool(x) x = self.blocks(x) x = self.conv2(x) x = self.avg_pool(x) x = self.last_conv(x) x = self.hardswish(x) x = self.dropout(x) x = self.flatten(x) x = self.fc(x) return x def _load_pretrained(pretrained, model, model_url, use_ssld): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def ESNet_x0_25(pretrained=False, use_ssld=False, **kwargs): """ ESNet_x0_25 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ESNet_x0_25` model depends on args. """ model = ESNet( scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_25"], use_ssld) return model def ESNet_x0_5(pretrained=False, use_ssld=False, **kwargs): """ ESNet_x0_5 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ESNet_x0_5` model depends on args. """ model = ESNet( scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_5"], use_ssld) return model def ESNet_x0_75(pretrained=False, use_ssld=False, **kwargs): """ ESNet_x0_75 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ESNet_x0_75` model depends on args. """ model = ESNet( scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x0_75"], use_ssld) return model def ESNet_x1_0(pretrained=False, use_ssld=False, **kwargs): """ ESNet_x1_0 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `ESNet_x1_0` model depends on args. """ model = ESNet( scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["ESNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["ESNet_x1_0"], use_ssld) return model