import os import sys sys.path.append(os.path.abspath('../PaddleRS')) import paddlers as pdrs # 定义训练和验证时的transforms train_transforms = pdrs.datasets.ComposeTrans( input_keys=['lq', 'gt'], output_keys=['lq', 'gt'], pipelines=[{ 'name': 'SRPairedRandomCrop', 'gt_patch_size': 192, 'scale': 4 }, { 'name': 'PairedRandomHorizontalFlip' }, { 'name': 'PairedRandomVerticalFlip' }, { 'name': 'PairedRandomTransposeHW' }, { 'name': 'Transpose' }, { 'name': 'Normalize', 'mean': [0.0, 0.0, 0.0], 'std': [255.0, 255.0, 255.0] }]) test_transforms = pdrs.datasets.ComposeTrans( input_keys=['lq', 'gt'], output_keys=['lq', 'gt'], pipelines=[{ 'name': 'Transpose' }, { 'name': 'Normalize', 'mean': [0.0, 0.0, 0.0], 'std': [255.0, 255.0, 255.0] }]) # 定义训练集 train_gt_floder = r"../work/RSdata_for_SR/trian_HR" # 高分辨率影像所在路径 train_lq_floder = r"../work/RSdata_for_SR/train_LR/x4" # 低分辨率影像所在路径 num_workers = 4 batch_size = 16 scale = 4 train_dataset = pdrs.datasets.SRdataset( mode='train', gt_floder=train_gt_floder, lq_floder=train_lq_floder, transforms=train_transforms(), scale=scale, num_workers=num_workers, batch_size=batch_size) # 定义测试集 test_gt_floder = r"../work/RSdata_for_SR/test_HR" test_lq_floder = r"../work/RSdata_for_SR/test_LR/x4" test_dataset = pdrs.datasets.SRdataset( mode='test', gt_floder=test_gt_floder, lq_floder=test_lq_floder, transforms=test_transforms(), scale=scale) # 初始化模型,可以对网络结构的参数进行调整 model = pdrs.tasks.LESRCNNet(scale=4, multi_scale=False, group=1) model.train( total_iters=1000000, train_dataset=train_dataset(), test_dataset=test_dataset(), output_dir='output_dir', validate=5000, snapshot=5000, log=100, lr_rate=0.0001, periods=[250000, 250000, 250000, 250000], restart_weights=[1, 1, 1, 1])