# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import numpy as np from tqdm import tqdm from scipy.cluster.vq import kmeans from paddlers.utils import logging __all__ = ['YOLOAnchorCluster'] class BaseAnchorCluster(object): def __init__(self, num_anchors, cache, cache_path): """ Base Anchor Cluster Args: num_anchors (int): number of clusters cache (bool): whether using cache cache_path (str): cache directory path """ super(BaseAnchorCluster, self).__init__() self.num_anchors = num_anchors self.cache_path = cache_path self.cache = cache def print_result(self, centers): raise NotImplementedError('%s.print_result is not available' % self.__class__.__name__) def get_whs(self): whs_cache_path = os.path.join(self.cache_path, 'whs.npy') shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy') if self.cache and os.path.exists(whs_cache_path) and os.path.exists( shapes_cache_path): self.whs = np.load(whs_cache_path) self.shapes = np.load(shapes_cache_path) return self.whs, self.shapes whs = np.zeros((0, 2)) shapes = np.zeros((0, 2)) samples = copy.deepcopy(self.dataset.file_list) for sample in tqdm(samples): im_h, im_w = sample['image_shape'] bbox = sample['gt_bbox'] wh = bbox[:, 2:4] - bbox[:, 0:2] wh = wh / np.array([[im_w, im_h]]) shape = np.ones_like(wh) * np.array([[im_w, im_h]]) whs = np.vstack((whs, wh)) shapes = np.vstack((shapes, shape)) if self.cache: os.makedirs(self.cache_path, exist_ok=True) np.save(whs_cache_path, whs) np.save(shapes_cache_path, shapes) self.whs = whs self.shapes = shapes return self.whs, self.shapes def calc_anchors(self): raise NotImplementedError('%s.calc_anchors is not available' % self.__class__.__name__) def __call__(self): self.get_whs() centers = self.calc_anchors() return centers class YOLOAnchorCluster(BaseAnchorCluster): def __init__(self, num_anchors, dataset, image_size, cache=True, cache_path=None, iters=300, gen_iters=1000, thresh=0.25): """ YOLOv5 Anchor Cluster Reference: https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py Args: num_anchors (int): number of clusters dataset (DataSet): DataSet instance, VOC or COCO image_size (list or int): [h, w], being an int means image height and image width are the same. cache (bool): whether using cache. Defaults to True. cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset. Defaults to None. iters (int, optional): iters of kmeans algorithm. Defaults to 300. gen_iters (int, optional): iters of genetic algorithm. Defaults to 1000. thresh (float, optional): anchor scale threshold. Defaults to 0.25. """ self.dataset = dataset if cache_path is None: cache_path = self.dataset.data_dir if isinstance(image_size, int): image_size = [image_size] * 2 self.image_size = image_size self.iters = iters self.gen_iters = gen_iters self.thresh = thresh super(YOLOAnchorCluster, self).__init__(num_anchors, cache, cache_path) def print_result(self, centers): whs = self.whs x, best = self.metric(whs, centers) bpr, aat = (best > self.thresh).mean(), ( x > self.thresh).mean() * self.num_anchors logging.info( 'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' % (self.thresh, bpr, aat)) logging.info( 'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: ' % (self.num_anchors, self.image_size, x.mean(), best.mean(), x[x > self.thresh].mean())) logging.info('%d anchor cluster result: [w, h]' % self.num_anchors) for w, h in centers: logging.info('[%d, %d]' % (w, h)) def metric(self, whs, centers): r = whs[:, None] / centers[None] x = np.minimum(r, 1. / r).min(2) return x, x.max(1) def fitness(self, whs, centers): _, best = self.metric(whs, centers) return (best * (best > self.thresh)).mean() def calc_anchors(self): self.whs = self.whs * self.shapes / self.shapes.max( 1, keepdims=True) * np.array([self.image_size[::-1]]) wh0 = self.whs i = (wh0 < 3.0).any(1).sum() if i: logging.warning('Extremely small objects found. %d of %d ' 'labels are < 3 pixels in width or height' % (i, len(wh0))) wh = wh0[(wh0 >= 2.0).any(1)] logging.info('Running kmeans for %g anchors on %g points...' % (self.num_anchors, len(wh))) s = wh.std(0) centers, dist = kmeans(wh / s, self.num_anchors, iter=self.iters) centers *= s f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1 pbar = tqdm( range(self.gen_iters), desc='Evolving anchors with Genetic Algorithm') for _ in pbar: v = np.ones(sh) while (v == 1).all(): v = ((np.random.random(sh) < mp) * np.random.random() * np.random.randn(*sh) * s + 1).clip(0.3, 3.0) new_centers = (centers.copy() * v).clip(min=2.0) new_f = self.fitness(wh, new_centers) if new_f > f: f, centers = new_f, new_centers.copy() pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f centers = np.round(centers[np.argsort(centers.prod(1))]).astype( int).tolist() return centers