from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F class CenterLoss(nn.Layer): def __init__(self, num_classes=5013, feat_dim=2048): super(CenterLoss, self).__init__() self.num_classes = num_classes self.feat_dim = feat_dim self.centers = paddle.randn( shape=[self.num_classes, self.feat_dim]).astype( "float64") #random center def __call__(self, input, target): """ inputs: network output: {"features: xxx", "logits": xxxx} target: image label """ feats = input["features"] labels = target batch_size = feats.shape[0] #calc feat * feat dist1 = paddle.sum(paddle.square(feats), axis=1, keepdim=True) dist1 = paddle.expand(dist1, [batch_size, self.num_classes]) #dist2 of centers dist2 = paddle.sum(paddle.square(self.centers), axis=1, keepdim=True) #num_classes dist2 = paddle.expand(dist2, [self.num_classes, batch_size]).astype("float64") dist2 = paddle.transpose(dist2, [1, 0]) #first x * x + y * y distmat = paddle.add(dist1, dist2) tmp = paddle.matmul(feats, paddle.transpose(self.centers, [1, 0])) distmat = distmat - 2.0 * tmp #generate the mask classes = paddle.arange(self.num_classes).astype("int64") labels = paddle.expand( paddle.unsqueeze(labels, 1), (batch_size, self.num_classes)) mask = paddle.equal( paddle.expand(classes, [batch_size, self.num_classes]), labels).astype("float64") #get mask dist = paddle.multiply(distmat, mask) loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size return {'CenterLoss': loss}