# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddlers.models.ppseg as paddleseg def loss_computation(logits_list, labels, losses): loss_list = [] for i in range(len(logits_list)): logits = logits_list[i] loss_i = losses['types'][i] if isinstance(loss_i, paddleseg.models.MixedLoss): loss_list.append(losses['coef'][i] * sum(loss_i(logits, labels))) else: loss_list.append(losses['coef'][i] * loss_i(logits, labels)) return loss_list def multitask_loss_computation(logits_list, labels_list, losses): loss_list = [] for i in range(len(logits_list)): logits = logits_list[i] labels = labels_list[i] loss_i = losses['types'][i] if isinstance(loss_i, paddleseg.models.MixedLoss): loss_list.append(losses['coef'][i] * sum(loss_i(logits, labels))) else: loss_list.append(losses['coef'][i] * loss_i(logits, labels)) return loss_list def f1_score(intersect_area, pred_area, label_area): intersect_area = intersect_area.numpy() pred_area = pred_area.numpy() label_area = label_area.numpy() class_f1_sco = [] for i in range(len(intersect_area)): if pred_area[i] + label_area[i] == 0: f1_sco = 0 elif pred_area[i] == 0: f1_sco = 0 else: prec = intersect_area[i] / pred_area[i] rec = intersect_area[i] / label_area[i] f1_sco = 2 * prec * rec / (prec + rec) class_f1_sco.append(f1_sco) return np.array(class_f1_sco) def confusion_matrix(pred, label, num_classes, ignore_index=255): label = paddle.transpose(label, (0, 2, 3, 1)) pred = paddle.transpose(pred, (0, 2, 3, 1)) mask = label != ignore_index label = paddle.masked_select(label, mask) pred = paddle.masked_select(pred, mask) cat_matrix = num_classes * label + pred conf_mat = paddle.histogram( cat_matrix, bins=num_classes * num_classes, min=0, max=num_classes * num_classes - 1).reshape([num_classes, num_classes]) return conf_mat