# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os.path as osp import numpy as np import cv2 from collections import OrderedDict import paddle import paddle.nn.functional as F from paddle.static import InputSpec import paddlers.models.ppseg as paddleseg import paddlers from paddlers.transforms import arrange_transforms from paddlers.utils import get_single_card_bs, DisablePrint import paddlers.utils.logging as logging from .base import BaseModel from .utils import seg_metrics as metrics from paddlers.utils.checkpoint import seg_pretrain_weights_dict from paddlers.transforms import ImgDecoder, Resize import paddlers.models.cd as cd __all__ = ["CDNet"] class BaseChangeDetector(BaseModel): def __init__(self, model_name, num_classes=2, use_mixed_loss=False, **params): self.init_params = locals() if 'with_net' in self.init_params: del self.init_params['with_net'] super(BaseChangeDetector, self).__init__('changedetector') if model_name not in __all__: raise Exception("ERROR: There's no model named {}.".format( model_name)) self.model_name = model_name self.num_classes = num_classes self.use_mixed_loss = use_mixed_loss self.losses = None self.labels = None if params.get('with_net', True): params.pop('with_net', None) self.net = self.build_net(**params) self.find_unused_parameters = True def build_net(self, **params): # TODO: add other model net = cd.models.__dict__[self.model_name]( num_classes=self.num_classes, **params) return net def _fix_transforms_shape(self, image_shape): if hasattr(self, 'test_transforms'): if self.test_transforms is not None: has_resize_op = False resize_op_idx = -1 normalize_op_idx = len(self.test_transforms.transforms) for idx, op in enumerate(self.test_transforms.transforms): name = op.__class__.__name__ if name == 'Normalize': normalize_op_idx = idx if 'Resize' in name: has_resize_op = True resize_op_idx = idx if not has_resize_op: self.test_transforms.transforms.insert( normalize_op_idx, Resize(target_size=image_shape)) else: self.test_transforms.transforms[resize_op_idx] = Resize( target_size=image_shape) def _get_test_inputs(self, image_shape): if image_shape is not None: if len(image_shape) == 2: image_shape = [1, 3] + image_shape self._fix_transforms_shape(image_shape[-2:]) else: image_shape = [None, 3, -1, -1] self.fixed_input_shape = image_shape input_spec = [ InputSpec( shape=image_shape, name='image', dtype='float32') ] return input_spec def run(self, net, inputs, mode): net_out = net(inputs[0], inputs[1]) logit = net_out[0] outputs = OrderedDict() if mode == 'test': origin_shape = inputs[2] if self.status == 'Infer': label_map_list, score_map_list = self._postprocess( net_out, origin_shape, transforms=inputs[3]) else: logit_list = self._postprocess( logit, origin_shape, transforms=inputs[3]) label_map_list = [] score_map_list = [] for logit in logit_list: logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC label_map_list.append( paddle.argmax( logit, axis=-1, keepdim=False, dtype='int32') .squeeze().numpy()) score_map_list.append( F.softmax( logit, axis=-1).squeeze().numpy().astype( 'float32')) outputs['label_map'] = label_map_list outputs['score_map'] = score_map_list if mode == 'eval': if self.status == 'Infer': pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW else: pred = paddle.argmax( logit, axis=1, keepdim=True, dtype='int32') label = inputs[2] origin_shape = [label.shape[-2:]] pred = self._postprocess( pred, origin_shape, transforms=inputs[3])[0] # NCHW intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area( pred, label, self.num_classes) outputs['intersect_area'] = intersect_area outputs['pred_area'] = pred_area outputs['label_area'] = label_area outputs['conf_mat'] = metrics.confusion_matrix(pred, label, self.num_classes) if mode == 'train': loss_list = metrics.loss_computation( logits_list=net_out, labels=inputs[2], losses=self.losses) loss = sum(loss_list) outputs['loss'] = loss return outputs def default_loss(self): if isinstance(self.use_mixed_loss, bool): if self.use_mixed_loss: losses = [ paddleseg.models.CrossEntropyLoss(), paddleseg.models.LovaszSoftmaxLoss() ] coef = [.8, .2] loss_type = [ paddleseg.models.MixedLoss( losses=losses, coef=coef), ] else: loss_type = [paddleseg.models.CrossEntropyLoss()] else: losses, coef = list(zip(*self.use_mixed_loss)) if not set(losses).issubset( ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']): raise ValueError( "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported." ) losses = [getattr(paddleseg.models, loss)() for loss in losses] loss_type = [ paddleseg.models.MixedLoss( losses=losses, coef=list(coef)) ] loss_coef = [1.0] losses = {'types': loss_type, 'coef': loss_coef} return losses def default_optimizer(self, parameters, learning_rate, num_epochs, num_steps_each_epoch, lr_decay_power=0.9): decay_step = num_epochs * num_steps_each_epoch lr_scheduler = paddle.optimizer.lr.PolynomialDecay( learning_rate, decay_step, end_lr=0, power=lr_decay_power) optimizer = paddle.optimizer.Momentum( learning_rate=lr_scheduler, parameters=parameters, momentum=0.9, weight_decay=4e-5) return optimizer def train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, optimizer=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights=None, learning_rate=0.01, lr_decay_power=0.9, early_stop=False, early_stop_patience=5, use_vdl=True, resume_checkpoint=None): """ Train the model. Args: num_epochs(int): The number of epochs. train_dataset(paddlers.dataset): Training dataset. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2. eval_dataset(paddlers.dataset, optional): Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None. optimizer(paddle.optimizer.Optimizer or None, optional): Optimizer used in training. If None, a default optimizer is used. Defaults to None. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. save_dir(str, optional): Directory to save the model. Defaults to 'output'. pretrain_weights(str or None, optional): None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to None. learning_rate(float, optional): Learning rate for training. Defaults to .025. lr_decay_power(float, optional): Learning decay power. Defaults to .9. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. early_stop_patience(int, optional): Early stop patience. Defaults to 5. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from. If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and `pretrain_weights` can be set simultaneously. Defaults to None. """ if self.status == 'Infer': logging.error( "Exported inference model does not support training.", exit=True) if pretrain_weights is not None and resume_checkpoint is not None: logging.error( "pretrain_weights and resume_checkpoint cannot be set simultaneously.", exit=True) self.labels = train_dataset.labels if self.losses is None: self.losses = self.default_loss() if optimizer is None: num_steps_each_epoch = train_dataset.num_samples // train_batch_size self.optimizer = self.default_optimizer( self.net.parameters(), learning_rate, num_epochs, num_steps_each_epoch, lr_decay_power) else: self.optimizer = optimizer if pretrain_weights is not None and not osp.exists(pretrain_weights): if pretrain_weights not in seg_pretrain_weights_dict[ self.model_name]: logging.warning( "Path of pretrain_weights('{}') does not exist!".format( pretrain_weights)) logging.warning("Pretrain_weights is forcibly set to '{}'. " "If don't want to use pretrain weights, " "set pretrain_weights to be None.".format( seg_pretrain_weights_dict[self.model_name][ 0])) pretrain_weights = seg_pretrain_weights_dict[self.model_name][ 0] elif pretrain_weights is not None and osp.exists(pretrain_weights): if osp.splitext(pretrain_weights)[-1] != '.pdparams': logging.error( "Invalid pretrain weights. Please specify a '.pdparams' file.", exit=True) pretrained_dir = osp.join(save_dir, 'pretrain') is_backbone_weights = pretrain_weights == 'IMAGENET' self.net_initialize( pretrain_weights=pretrain_weights, save_dir=pretrained_dir, resume_checkpoint=resume_checkpoint, is_backbone_weights=is_backbone_weights) self.train_loop( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, early_stop=early_stop, early_stop_patience=early_stop_patience, use_vdl=use_vdl) def quant_aware_train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, optimizer=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', learning_rate=0.0001, lr_decay_power=0.9, early_stop=False, early_stop_patience=5, use_vdl=True, resume_checkpoint=None, quant_config=None): """ Quantization-aware training. Args: num_epochs(int): The number of epochs. train_dataset(paddlers.dataset): Training dataset. train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2. eval_dataset(paddlers.dataset, optional): Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None. optimizer(paddle.optimizer.Optimizer or None, optional): Optimizer used in training. If None, a default optimizer is used. Defaults to None. save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. save_dir(str, optional): Directory to save the model. Defaults to 'output'. learning_rate(float, optional): Learning rate for training. Defaults to .025. lr_decay_power(float, optional): Learning decay power. Defaults to .9. early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. early_stop_patience(int, optional): Early stop patience. Defaults to 5. use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb configuration will be used. Defaults to None. resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training from. If None, no training checkpoint will be resumed. Defaults to None. """ self._prepare_qat(quant_config) self.train( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, optimizer=optimizer, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, pretrain_weights=None, learning_rate=learning_rate, lr_decay_power=lr_decay_power, early_stop=early_stop, early_stop_patience=early_stop_patience, use_vdl=use_vdl, resume_checkpoint=resume_checkpoint) def evaluate(self, eval_dataset, batch_size=1, return_details=False): """ Evaluate the model. Args: eval_dataset(paddlers.dataset): Evaluation dataset. batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1. return_details(bool, optional): Whether to return evaluation details. Defaults to False. Returns: collections.OrderedDict with key-value pairs: {"miou": `mean intersection over union`, "category_iou": `category-wise mean intersection over union`, "oacc": `overall accuracy`, "category_acc": `category-wise accuracy`, "kappa": ` kappa coefficient`, "category_F1-score": `F1 score`}. """ arrange_transforms( model_type=self.model_type, transforms=eval_dataset.transforms, mode='eval') self.net.eval() nranks = paddle.distributed.get_world_size() local_rank = paddle.distributed.get_rank() if nranks > 1: # Initialize parallel environment if not done. if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized( ): paddle.distributed.init_parallel_env() batch_size_each_card = get_single_card_bs(batch_size) if batch_size_each_card > 1: batch_size_each_card = 1 batch_size = batch_size_each_card * paddlers.env_info['num'] logging.warning( "Segmenter only supports batch_size=1 for each gpu/cpu card " \ "during evaluation, so batch_size " \ "is forcibly set to {}.".format(batch_size)) self.eval_data_loader = self.build_data_loader( eval_dataset, batch_size=batch_size, mode='eval') intersect_area_all = 0 pred_area_all = 0 label_area_all = 0 conf_mat_all = [] logging.info( "Start to evaluate(total_samples={}, total_steps={})...".format( eval_dataset.num_samples, math.ceil(eval_dataset.num_samples * 1.0 / batch_size))) with paddle.no_grad(): for step, data in enumerate(self.eval_data_loader): data.append(eval_dataset.transforms.transforms) outputs = self.run(self.net, data, 'eval') pred_area = outputs['pred_area'] label_area = outputs['label_area'] intersect_area = outputs['intersect_area'] conf_mat = outputs['conf_mat'] # Gather from all ranks if nranks > 1: intersect_area_list = [] pred_area_list = [] label_area_list = [] conf_mat_list = [] paddle.distributed.all_gather(intersect_area_list, intersect_area) paddle.distributed.all_gather(pred_area_list, pred_area) paddle.distributed.all_gather(label_area_list, label_area) paddle.distributed.all_gather(conf_mat_list, conf_mat) # Some image has been evaluated and should be eliminated in last iter if (step + 1) * nranks > len(eval_dataset): valid = len(eval_dataset) - step * nranks intersect_area_list = intersect_area_list[:valid] pred_area_list = pred_area_list[:valid] label_area_list = label_area_list[:valid] conf_mat_list = conf_mat_list[:valid] intersect_area_all += sum(intersect_area_list) pred_area_all += sum(pred_area_list) label_area_all += sum(label_area_list) conf_mat_all.extend(conf_mat_list) else: intersect_area_all = intersect_area_all + intersect_area pred_area_all = pred_area_all + pred_area label_area_all = label_area_all + label_area conf_mat_all.append(conf_mat) class_iou, miou = paddleseg.utils.metrics.mean_iou( intersect_area_all, pred_area_all, label_area_all) # TODO 确认是按oacc还是macc class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all, pred_area_all) kappa = paddleseg.utils.metrics.kappa(intersect_area_all, pred_area_all, label_area_all) category_f1score = metrics.f1_score(intersect_area_all, pred_area_all, label_area_all) eval_metrics = OrderedDict( zip([ 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa', 'category_F1-score' ], [miou, class_iou, oacc, class_acc, kappa, category_f1score])) if return_details: conf_mat = sum(conf_mat_all) eval_details = {'confusion_matrix': conf_mat.tolist()} return eval_metrics, eval_details return eval_metrics def predict(self, img_file, transforms=None): """ Do inference. Args: Args: img_file(List[np.ndarray or str], str or np.ndarray): Image path or decoded image data in a BGR format, which also could constitute a list, meaning all images to be predicted as a mini-batch. transforms(paddlers.transforms.Compose or None, optional): Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None. Returns: If img_file is a string or np.array, the result is a dict with key-value pairs: {"label map": `label map`, "score_map": `score map`}. If img_file is a list, the result is a list composed of dicts with the corresponding fields: label_map(np.ndarray): the predicted label map (HW) score_map(np.ndarray): the prediction score map (HWC) """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("transforms need to be defined, now is None.") if transforms is None: transforms = self.test_transforms if isinstance(img_file, (str, np.ndarray)): images = [img_file] else: images = img_file batch_im, batch_origin_shape = self._preprocess(images, transforms, self.model_type) self.net.eval() data = (batch_im, batch_origin_shape, transforms.transforms) outputs = self.run(self.net, data, 'test') label_map_list = outputs['label_map'] score_map_list = outputs['score_map'] if isinstance(img_file, list): prediction = [{ 'label_map': l, 'score_map': s } for l, s in zip(label_map_list, score_map_list)] else: prediction = { 'label_map': label_map_list[0], 'score_map': score_map_list[0] } return prediction def _preprocess(self, images, transforms, to_tensor=True): arrange_transforms( model_type=self.model_type, transforms=transforms, mode='test') batch_im = list() batch_ori_shape = list() for im in images: sample = {'image': im} if isinstance(sample['image'], str): sample = ImgDecoder(to_rgb=False)(sample) ori_shape = sample['image'].shape[:2] im = transforms(sample)[0] batch_im.append(im) batch_ori_shape.append(ori_shape) if to_tensor: batch_im = paddle.to_tensor(batch_im) else: batch_im = np.asarray(batch_im) return batch_im, batch_ori_shape @staticmethod def get_transforms_shape_info(batch_ori_shape, transforms): batch_restore_list = list() for ori_shape in batch_ori_shape: restore_list = list() h, w = ori_shape[0], ori_shape[1] for op in transforms: if op.__class__.__name__ == 'Resize': restore_list.append(('resize', (h, w))) h, w = op.target_size elif op.__class__.__name__ == 'ResizeByShort': restore_list.append(('resize', (h, w))) im_short_size = min(h, w) im_long_size = max(h, w) scale = float(op.short_size) / float(im_short_size) if 0 < op.max_size < np.round(scale * im_long_size): scale = float(op.max_size) / float(im_long_size) h = int(round(h * scale)) w = int(round(w * scale)) elif op.__class__.__name__ == 'ResizeByLong': restore_list.append(('resize', (h, w))) im_long_size = max(h, w) scale = float(op.long_size) / float(im_long_size) h = int(round(h * scale)) w = int(round(w * scale)) elif op.__class__.__name__ == 'Padding': if op.target_size: target_h, target_w = op.target_size else: target_h = int( (np.ceil(h / op.size_divisor) * op.size_divisor)) target_w = int( (np.ceil(w / op.size_divisor) * op.size_divisor)) if op.pad_mode == -1: offsets = op.offsets elif op.pad_mode == 0: offsets = [0, 0] elif op.pad_mode == 1: offsets = [(target_h - h) // 2, (target_w - w) // 2] else: offsets = [target_h - h, target_w - w] restore_list.append(('padding', (h, w), offsets)) h, w = target_h, target_w batch_restore_list.append(restore_list) return batch_restore_list def _postprocess(self, batch_pred, batch_origin_shape, transforms): batch_restore_list = BaseChangeDetector.get_transforms_shape_info( batch_origin_shape, transforms) if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer': return self._infer_postprocess( batch_label_map=batch_pred[0], batch_score_map=batch_pred[1], batch_restore_list=batch_restore_list) results = [] if batch_pred.dtype == paddle.float32: mode = 'bilinear' else: mode = 'nearest' for pred, restore_list in zip(batch_pred, batch_restore_list): pred = paddle.unsqueeze(pred, axis=0) for item in restore_list[::-1]: h, w = item[1][0], item[1][1] if item[0] == 'resize': pred = F.interpolate( pred, (h, w), mode=mode, data_format='NCHW') elif item[0] == 'padding': x, y = item[2] pred = pred[:, :, y:y + h, x:x + w] else: pass results.append(pred) return results def _infer_postprocess(self, batch_label_map, batch_score_map, batch_restore_list): label_maps = [] score_maps = [] for label_map, score_map, restore_list in zip( batch_label_map, batch_score_map, batch_restore_list): if not isinstance(label_map, np.ndarray): label_map = paddle.unsqueeze(label_map, axis=[0, 3]) score_map = paddle.unsqueeze(score_map, axis=0) for item in restore_list[::-1]: h, w = item[1][0], item[1][1] if item[0] == 'resize': if isinstance(label_map, np.ndarray): label_map = cv2.resize( label_map, (w, h), interpolation=cv2.INTER_NEAREST) score_map = cv2.resize( score_map, (w, h), interpolation=cv2.INTER_LINEAR) else: label_map = F.interpolate( label_map, (h, w), mode='nearest', data_format='NHWC') score_map = F.interpolate( score_map, (h, w), mode='bilinear', data_format='NHWC') elif item[0] == 'padding': x, y = item[2] if isinstance(label_map, np.ndarray): label_map = label_map[..., y:y + h, x:x + w] score_map = score_map[..., y:y + h, x:x + w] else: label_map = label_map[:, :, y:y + h, x:x + w] score_map = score_map[:, :, y:y + h, x:x + w] else: pass label_map = label_map.squeeze() score_map = score_map.squeeze() if not isinstance(label_map, np.ndarray): label_map = label_map.numpy() score_map = score_map.numpy() label_maps.append(label_map.squeeze()) score_maps.append(score_map.squeeze()) return label_maps, score_maps class CDNet(BaseChangeDetector): def __init__(self, num_classes=2, use_mixed_loss=False, in_channels=6, **params): params.update({'in_channels': in_channels}) super(CDNet, self).__init__( model_name='CDNet', num_classes=num_classes, use_mixed_loss=use_mixed_loss, **params)