# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import paddle import paddlers from paddlers.tasks.change_detector import BaseChangeDetector from attach_tools import Attach attach = Attach.to(paddlers.tasks.change_detector) def make_trainer(net_type, attach_trainer=True): def _init_func(self, num_classes=2, use_mixed_loss=False, losses=None, **_params_): sig = inspect.signature(net_type.__init__) net_params = { k: p.default for k, p in sig.parameters.items() if not p.default is p.empty } net_params.pop('self', None) net_params.pop('num_classes', None) # Special rule to parse arguments from `_params_`. # When using pdrs.tasks.load_model, `_params_`` is a dict with the key '_params_'. # This bypasses the dynamic modification/creation of function signature. if '_params_' not in _params_: net_params.update(_params_) else: net_params.update(_params_['_params_']) super(trainer_type, self).__init__( model_name=net_type.__name__, num_classes=num_classes, use_mixed_loss=use_mixed_loss, losses=losses, **net_params) if not issubclass(net_type, paddle.nn.Layer): raise TypeError("net must be a subclass of paddle.nn.Layer") trainer_name = net_type.__name__ trainer_type = type(trainer_name, (BaseChangeDetector, ), {'__init__': _init_func}) if attach_trainer: trainer_type = attach(trainer_type) return trainer_type def make_trainer_and_build(net_type, *args, **kwargs): trainer_type = make_trainer(net_type, attach_trainer=True) return trainer_type(*args, **kwargs) @attach class CustomTrainer(BaseChangeDetector): def __init__(self, num_classes=2, use_mixed_loss=False, losses=None, in_channels=3, att_types='ct', use_dropout=False, **params): params.update({ 'in_channels': in_channels, 'att_types': att_types, 'use_dropout': use_dropout }) super().__init__( model_name='CustomModel', num_classes=num_classes, use_mixed_loss=use_mixed_loss, losses=losses, **params)