# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.nn as nn import paddle.nn.functional as F def normal_init(param, *args, **kwargs): """ Initialize parameters with a normal distribution. Args: param (Tensor): The tensor that needs to be initialized. Returns: The initialized parameters. """ return nn.initializer.Normal(*args, **kwargs)(param) def kaiming_normal_init(param, *args, **kwargs): """ Initialize parameters with the Kaiming normal distribution. For more information about the Kaiming initialization method, please refer to https://arxiv.org/abs/1502.01852 Args: param (Tensor): The tensor that needs to be initialized. Returns: The initialized parameters. """ return nn.initializer.KaimingNormal(*args, **kwargs)(param) def constant_init(param, *args, **kwargs): """ Initialize parameters with constants. Args: param (Tensor): The tensor that needs to be initialized. Returns: The initialized parameters. """ return nn.initializer.Constant(*args, **kwargs)(param) class KaimingInitMixin: """ A mix-in that provides the Kaiming initialization functionality. Examples: from paddlers.rs_models.cd.models.param_init import KaimingInitMixin class CustomNet(nn.Layer, KaimingInitMixin): def __init__(self, num_channels, num_classes): super().__init__() self.conv = nn.Conv2D(num_channels, num_classes, 3, 1, 0, bias_attr=False) self.bn = nn.BatchNorm2D(num_classes) self.init_weight() """ def init_weight(self): for layer in self.sublayers(): if isinstance(layer, nn.Conv2D): kaiming_normal_init(layer.weight) elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)): constant_init(layer.weight, value=1) constant_init(layer.bias, value=0)