# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import numpy as np from PIL import Image import paddle from ppgan.models.generators import DRNGenerator from ppgan.utils.download import get_path_from_url from ppgan.utils.logger import get_logger from .base_predictor import BasePredictor REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/DRNSx4.pdparams' class DRNPredictor(BasePredictor): def __init__(self, output='output', weight_path=None): self.input = input self.output = os.path.join(output, 'DRN') #定义超分的结果保存的路径,为output路径+模型名所在文件夹 self.model = DRNGenerator((2, 4)) # 实例化模型 if weight_path is None: weight_path = get_path_from_url(REALSR_WEIGHT_URL) state_dict = paddle.load(weight_path) #加载权重 state_dict = state_dict['generator'] self.model.load_dict(state_dict) self.model.eval() # 标准化 def norm(self, img): img = np.array(img).transpose([2, 0, 1]).astype('float32') / 1.0 return img.astype('float32') # 去标准化 def denorm(self, img): img = img.transpose((1, 2, 0)) return (img * 1).clip(0, 255).astype('uint8') # 对图片输入进行预测,输入可以是图像路径,也可以是cv2读取的矩阵,或者PIL读取的图像文件 def run_image(self, img): if isinstance(img, str): ori_img = Image.open(img).convert('RGB') elif isinstance(img, np.ndarray): ori_img = Image.fromarray(img).convert('RGB') elif isinstance(img, Image.Image): ori_img = img img = self.norm(ori_img) #图像标准化 x = paddle.to_tensor(img[np.newaxis, ...]) #转成tensor with paddle.no_grad(): out = self.model( x )[2] # 执行预测,DRN模型会输出三个tensor,第一个是原始低分辨率影像,第二个是放大两倍,第三个才是我们所需要的最后的结果 pred_img = self.denorm(out.numpy()[0]) #tensor转成numpy的array并去标准化 pred_img = Image.fromarray(pred_img) # array转图像 return pred_img #输入图像文件路径 def run(self, input): # 如果输出路径不存在则新建一个 if not os.path.exists(self.output): os.makedirs(self.output) pred_img = self.run_image(input) #对输入的图片进行预测 out_path = None if self.output: try: base_name = os.path.splitext(os.path.basename(input))[0] except: base_name = 'result' out_path = os.path.join(self.output, base_name + '.png') #保存路径 pred_img.save(out_path) #保存输出图片 logger = get_logger() logger.info('Image saved to {}'.format(out_path)) return pred_img, out_path