# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle.utils import try_import from paddlers.models.ppdet.core.workspace import register, serializable from paddlers.models.ppdet.utils.logger import setup_logger logger = setup_logger(__name__) @register @serializable class QAT(object): def __init__(self, quant_config, print_model): super(QAT, self).__init__() self.quant_config = quant_config self.print_model = print_model def __call__(self, model): paddleslim = try_import('paddleslim') self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config) if self.print_model: logger.info("Model before quant:") logger.info(model) self.quanter.quantize(model) if self.print_model: logger.info("Quantized model:") logger.info(model) return model def save_quantized_model(self, layer, path, input_spec=None, **config): self.quanter.save_quantized_model( model=layer, path=path, input_spec=input_spec, **config) @register @serializable class PTQ(object): def __init__(self, ptq_config, quant_batch_num=10, output_dir='output_inference', fuse=True, fuse_list=None): super(PTQ, self).__init__() self.ptq_config = ptq_config self.quant_batch_num = quant_batch_num self.output_dir = output_dir self.fuse = fuse self.fuse_list = fuse_list def __call__(self, model): paddleslim = try_import('paddleslim') self.ptq = paddleslim.PTQ(**self.ptq_config) model.eval() quant_model = self.ptq.quantize( model, fuse=self.fuse, fuse_list=self.fuse_list) return quant_model def save_quantized_model(self, quant_model, quantize_model_path, input_spec=None): self.ptq.save_quantized_model(quant_model, quantize_model_path, input_spec)