# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import numpy as np import paddle from paddle.distributed import fleet __all__ = ['init_parallel_env', 'set_random_seed', 'init_fleet_env'] def init_fleet_env(find_unused_parameters=False): strategy = fleet.DistributedStrategy() strategy.find_unused_parameters = find_unused_parameters fleet.init(is_collective=True, strategy=strategy) def init_parallel_env(): env = os.environ dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if dist: trainer_id = int(env['PADDLE_TRAINER_ID']) local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) paddle.distributed.init_parallel_env() def set_random_seed(seed): paddle.seed(seed) random.seed(seed) np.random.seed(seed)