# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import copy from .base import BaseDataset from paddlers.utils import logging, get_encoding, norm_path, is_pic class SegDataset(BaseDataset): """读取语义分割任务数据集,并对样本进行相应的处理。 Args: data_dir (str): 数据集所在的目录路径。 file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。 transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。 num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的 一半。 shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 """ def __init__(self, data_dir, file_list, label_list=None, transforms=None, num_workers='auto', shuffle=False): super(SegDataset, self).__init__(data_dir, label_list, transforms, num_workers, shuffle) # TODO batch padding self.batch_transforms = None self.file_list = list() self.labels = list() # TODO:非None时,让用户跳转数据集分析生成label_list # 不要在此处分析label file if label_list is not None: with open(label_list, encoding=get_encoding(label_list)) as f: for line in f: item = line.strip() self.labels.append(item) with open(file_list, encoding=get_encoding(file_list)) as f: for line in f: items = line.strip().split() if len(items) > 2: raise Exception( "A space is defined as the delimiter to separate the image and label path, " \ "so the space cannot be in the image or label path, but the line[{}] of " \ " file_list[{}] has a space in the image or label path.".format(line, file_list)) items[0] = norm_path(items[0]) items[1] = norm_path(items[1]) full_path_im = osp.join(data_dir, items[0]) full_path_label = osp.join(data_dir, items[1]) if not is_pic(full_path_im) or not is_pic(full_path_label): continue if not osp.exists(full_path_im): raise IOError('Image file {} does not exist!'.format( full_path_im)) if not osp.exists(full_path_label): raise IOError('Label file {} does not exist!'.format( full_path_label)) self.file_list.append({ 'image': full_path_im, 'mask': full_path_label }) self.num_samples = len(self.file_list) logging.info("{} samples in file {}".format( len(self.file_list), file_list)) def __len__(self): return len(self.file_list)