# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from enum import IntEnum import os.path as osp from .base import BaseDataset from paddlers.utils import logging, get_encoding, norm_path, is_pic class CDDataset(BaseDataset): """ 读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。 Args: data_dir (str): 数据集所在的目录路径。 file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路径)。当`with_seg_labels`为 False(默认设置)时,文件中每一行应依次包含第一时相影像、第二时相影像以及变化检测标签的路径;当`with_seg_labels`为True时, 文件中每一行应依次包含第一时相影像、第二时相影像、变化检测标签、第一时相建筑物标签以及第二时相建筑物标签的路径。 label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。 transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。 num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的 一半。 shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 with_seg_labels (bool, optional): 数据集中是否包含两个时相的语义分割标签。默认为False。 binarize_labels (bool, optional): 是否对数据集中的标签进行二值化操作。默认为False。 """ def __init__(self, data_dir, file_list, label_list=None, transforms=None, num_workers='auto', shuffle=False, with_seg_labels=False, binarize_labels=False): super(CDDataset, self).__init__(data_dir, label_list, transforms, num_workers, shuffle) DELIMETER = ' ' # TODO: batch padding self.batch_transforms = None self.file_list = list() self.labels = list() self.with_seg_labels = with_seg_labels if self.with_seg_labels: num_items = 5 # RGB1, RGB2, CD, Seg1, Seg2 else: num_items = 3 # RGB1, RGB2, CD self.binarize_labels = binarize_labels # TODO:非None时,让用户跳转数据集分析生成label_list # 不要在此处分析label file if label_list is not None: with open(label_list, encoding=get_encoding(label_list)) as f: for line in f: item = line.strip() self.labels.append(item) with open(file_list, encoding=get_encoding(file_list)) as f: for line in f: items = line.strip().split(DELIMETER) if len(items) != num_items: raise Exception( "Line[{}] in file_list[{}] has an incorrect number of file paths.". format(line.strip(), file_list)) items = list(map(norm_path, items)) full_path_im_t1 = osp.join(data_dir, items[0]) full_path_im_t2 = osp.join(data_dir, items[1]) full_path_label = osp.join(data_dir, items[2]) if not all( map(is_pic, (full_path_im_t1, full_path_im_t2, full_path_label))): continue if not osp.exists(full_path_im_t1): raise IOError('Image file {} does not exist!'.format( full_path_im_t1)) if not osp.exists(full_path_im_t2): raise IOError('Image file {} does not exist!'.format( full_path_im_t2)) if not osp.exists(full_path_label): raise IOError('Label file {} does not exist!'.format( full_path_label)) if with_seg_labels: full_path_seg_label_t1 = osp.join(data_dir, items[3]) full_path_seg_label_t2 = osp.join(data_dir, items[4]) if not osp.exists(full_path_seg_label_t1): raise IOError('Label file {} does not exist!'.format( full_path_seg_label_t1)) if not osp.exists(full_path_seg_label_t2): raise IOError('Label file {} does not exist!'.format( full_path_seg_label_t2)) item_dict = dict( image_t1=full_path_im_t1, image_t2=full_path_im_t2, mask=full_path_label) if with_seg_labels: item_dict['aux_masks'] = [ full_path_seg_label_t1, full_path_seg_label_t2 ] self.file_list.append(item_dict) self.num_samples = len(self.file_list) logging.info("{} samples in file {}".format( len(self.file_list), file_list)) def __getitem__(self, idx): sample = copy.deepcopy(self.file_list[idx]) sample = self.transforms.apply_transforms(sample) if self.binarize_labels: # Requires 'mask' to exist sample['mask'] = self._binarize(sample['mask']) if 'aux_masks' in sample: sample['aux_masks'] = list( map(self._binarize, sample['aux_masks'])) outputs = self.transforms.arrange_outputs(sample) return outputs def __len__(self): return len(self.file_list) def _binarize(self, mask, threshold=127): return (mask > threshold).astype('int64') class MaskType(IntEnum): """Enumeration of the mask types used in the change detection task.""" CD = 0 SEG_T1 = 1 SEG_T2 = 2