#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle import paddle.nn as nn from .celoss import CELoss from .dmlloss import DMLLoss from .distanceloss import DistanceLoss from .rkdloss import RKdAngle, RkdDistance class DistillationCELoss(CELoss): """ DistillationCELoss """ def __init__(self, model_name_pairs=[], epsilon=None, key=None, name="loss_ce"): super().__init__(epsilon=epsilon) assert isinstance(model_name_pairs, list) self.key = key self.model_name_pairs = model_name_pairs self.name = name def forward(self, predicts, batch): loss_dict = dict() for idx, pair in enumerate(self.model_name_pairs): out1 = predicts[pair[0]] out2 = predicts[pair[1]] if self.key is not None: out1 = out1[self.key] out2 = out2[self.key] loss = super().forward(out1, out2) for key in loss: loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key] return loss_dict class DistillationGTCELoss(CELoss): """ DistillationGTCELoss """ def __init__(self, model_names=[], epsilon=None, key=None, name="loss_gt_ce"): super().__init__(epsilon=epsilon) assert isinstance(model_names, list) self.key = key self.model_names = model_names self.name = name def forward(self, predicts, batch): loss_dict = dict() for name in self.model_names: out = predicts[name] if self.key is not None: out = out[self.key] loss = super().forward(out, batch) for key in loss: loss_dict["{}_{}".format(key, name)] = loss[key] return loss_dict class DistillationDMLLoss(DMLLoss): """ """ def __init__(self, model_name_pairs=[], act="softmax", key=None, name="loss_dml"): super().__init__(act=act) assert isinstance(model_name_pairs, list) self.key = key self.model_name_pairs = model_name_pairs self.name = name def forward(self, predicts, batch): loss_dict = dict() for idx, pair in enumerate(self.model_name_pairs): out1 = predicts[pair[0]] out2 = predicts[pair[1]] if self.key is not None: out1 = out1[self.key] out2 = out2[self.key] loss = super().forward(out1, out2) if isinstance(loss, dict): for key in loss: loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = loss[key] else: loss_dict["{}_{}".format(self.name, idx)] = loss return loss_dict class DistillationDistanceLoss(DistanceLoss): """ """ def __init__(self, mode="l2", model_name_pairs=[], key=None, name="loss_", **kargs): super().__init__(mode=mode, **kargs) assert isinstance(model_name_pairs, list) self.key = key self.model_name_pairs = model_name_pairs self.name = name + mode def forward(self, predicts, batch): loss_dict = dict() for idx, pair in enumerate(self.model_name_pairs): out1 = predicts[pair[0]] out2 = predicts[pair[1]] if self.key is not None: out1 = out1[self.key] out2 = out2[self.key] loss = super().forward(out1, out2) for key in loss: loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key] return loss_dict class DistillationRKDLoss(nn.Layer): def __init__(self, target_size=None, model_name_pairs=(["Student", "Teacher"], ), student_keepkeys=[], teacher_keepkeys=[]): super().__init__() self.student_keepkeys = student_keepkeys self.teacher_keepkeys = teacher_keepkeys self.model_name_pairs = model_name_pairs assert len(self.student_keepkeys) == len(self.teacher_keepkeys) self.rkd_angle_loss = RKdAngle(target_size=target_size) self.rkd_dist_loss = RkdDistance(target_size=target_size) def __call__(self, predicts, batch): loss_dict = {} for m1, m2 in self.model_name_pairs: for idx, ( student_name, teacher_name ) in enumerate(zip(self.student_keepkeys, self.teacher_keepkeys)): student_out = predicts[m1][student_name] teacher_out = predicts[m2][teacher_name] loss_dict[f"loss_angle_{idx}_{m1}_{m2}"] = self.rkd_angle_loss( student_out, teacher_out) loss_dict[f"loss_dist_{idx}_{m1}_{m2}"] = self.rkd_dist_loss( student_out, teacher_out) return loss_dict