# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import copy import os import os.path as osp import random from collections import OrderedDict import numpy as np from .base import BaseDataset from paddlers.utils import logging, get_encoding, norm_path, is_pic from paddlers.transforms import DecodeImg, MixupImage from paddlers.tools import YOLOAnchorCluster class COCODetDataset(BaseDataset): """ Dataset with COCO annotations for detection tasks. Args: data_dir (str): Root directory of the dataset. image_dir (str): Directory that contains the images. ann_path (str): Path to COCO annotations. transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply. label_list (str|None, optional): Path of the file that contains the category names. Defaults to None. num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto', the number of workers will be automatically determined according to the number of CPU cores: If there are more than 16 cores,8 workers will be used. Otherwise, the number of workers will be half the number of CPU cores. Defaults: 'auto'. shuffle (bool, optional): Whether to shuffle the samples. Defaults to False. allow_empty (bool, optional): Whether to add negative samples. Defaults to False. empty_ratio (float, optional): Ratio of negative samples. If `empty_ratio` is smaller than 0 or not less than 1, keep all generated negative samples. Defaults to 1.0. """ def __init__(self, data_dir, image_dir, anno_path, transforms, label_list, num_workers='auto', shuffle=False, allow_empty=False, empty_ratio=1.): # matplotlib.use() must be called *before* pylab, matplotlib.pyplot, # or matplotlib.backends is imported for the first time. import matplotlib matplotlib.use('Agg') from pycocotools.coco import COCO super(COCODetDataset, self).__init__(data_dir, label_list, transforms, num_workers, shuffle) self.data_fields = None self.num_max_boxes = 50 self.use_mix = False if self.transforms is not None: for op in self.transforms.transforms: if isinstance(op, MixupImage): self.mixup_op = copy.deepcopy(op) self.use_mix = True self.num_max_boxes *= 2 break self.batch_transforms = None self.allow_empty = allow_empty self.empty_ratio = empty_ratio self.file_list = list() neg_file_list = list() self.labels = list() annotations = dict() annotations['images'] = list() annotations['categories'] = list() annotations['annotations'] = list() cname2cid = OrderedDict() label_id = 0 with open(label_list, 'r', encoding=get_encoding(label_list)) as f: for line in f.readlines(): cname2cid[line.strip()] = label_id label_id += 1 self.labels.append(line.strip()) for k, v in cname2cid.items(): annotations['categories'].append({ 'supercategory': 'component', 'id': v + 1, 'name': k }) anno_path = norm_path(os.path.join(self.data_dir, anno_path)) image_dir = norm_path(os.path.join(self.data_dir, image_dir)) assert anno_path.endswith('.json'), \ 'invalid coco annotation file: ' + anno_path from pycocotools.coco import COCO coco = COCO(anno_path) img_ids = coco.getImgIds() img_ids.sort() cat_ids = coco.getCatIds() ct = 0 catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)}) cname2cid = dict({ coco.loadCats(catid)[0]['name']: clsid for catid, clsid in catid2clsid.items() }) for img_id in img_ids: img_anno = coco.loadImgs([img_id])[0] im_fname = img_anno['file_name'] im_w = float(img_anno['width']) im_h = float(img_anno['height']) im_path = os.path.join(image_dir, im_fname) if image_dir else im_fname if not os.path.exists(im_path): logging.warning('Illegal image file: {}, and it will be ' 'ignored'.format(im_path)) continue if im_w < 0 or im_h < 0: logging.warning( 'Illegal width: {} or height: {} in annotation, ' 'and im_id: {} will be ignored'.format(im_w, im_h, img_id)) continue im_info = { 'image': im_path, 'im_id': np.array([img_id]), 'image_shape': np.array( [im_h, im_w], dtype=np.int32) } ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False) instances = coco.loadAnns(ins_anno_ids) is_crowds = [] gt_classes = [] gt_bboxs = [] gt_scores = [] difficults = [] for inst in instances: # Check gt bbox if inst.get('ignore', False): continue if 'bbox' not in inst.keys(): continue else: if not any(np.array(inst['bbox'])): continue # Read the box x1, y1, box_w, box_h = inst['bbox'] x2 = x1 + box_w y2 = y1 + box_h eps = 1e-5 if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps: inst['clean_bbox'] = [ round(float(x), 3) for x in [x1, y1, x2, y2] ] else: logging.warning( 'Found an invalid bbox in annotations: im_id: {}, ' 'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format( img_id, float(inst['area']), x1, y1, x2, y2)) is_crowds.append([inst['iscrowd']]) gt_classes.append([inst['category_id']]) gt_bboxs.append(inst['clean_bbox']) gt_scores.append([1.]) difficults.append([0]) annotations['annotations'].append({ 'iscrowd': inst['iscrowd'], 'image_id': int(inst['image_id']), 'bbox': inst['clean_bbox'], 'area': inst['area'], 'category_id': inst['category_id'], 'id': inst['id'], 'difficult': 0 }) label_info = { 'is_crowd': np.array(is_crowds), 'gt_class': np.array(gt_classes), 'gt_bbox': np.array(gt_bboxs).astype(np.float32), 'gt_score': np.array(gt_scores).astype(np.float32), 'difficult': np.array(difficults), } if label_info['gt_bbox'].size > 0: self.file_list.append({ ** im_info, ** label_info}) annotations['images'].append({ 'height': im_h, 'width': im_w, 'id': int(im_info['im_id']), 'file_name': osp.split(im_info['image'])[1] }) else: neg_file_list.append({ ** im_info, ** label_info}) ct += 1 if self.use_mix: self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances)) else: self.num_max_boxes = max(self.num_max_boxes, len(instances)) if not ct: logging.error( "No coco record found in %s' % (file_list)", exit=True) self.pos_num = len(self.file_list) if self.allow_empty and neg_file_list: self.file_list += self._sample_empty(neg_file_list) logging.info( "{} samples in file {}, including {} positive samples and {} negative samples.". format( len(self.file_list), anno_path, self.pos_num, len(self.file_list) - self.pos_num)) self.num_samples = len(self.file_list) self.coco_gt = COCO() self.coco_gt.dataset = annotations self.coco_gt.createIndex() self._epoch = 0 def __getitem__(self, idx): sample = copy.deepcopy(self.file_list[idx]) if self.data_fields is not None: sample = {k: sample[k] for k in self.data_fields} if self.use_mix and (self.mixup_op.mixup_epoch == -1 or self._epoch < self.mixup_op.mixup_epoch): if self.num_samples > 1: mix_idx = random.randint(1, self.num_samples - 1) mix_pos = (mix_idx + idx) % self.num_samples else: mix_pos = 0 sample_mix = copy.deepcopy(self.file_list[mix_pos]) if self.data_fields is not None: sample_mix = {k: sample_mix[k] for k in self.data_fields} sample = self.mixup_op(sample=[ DecodeImg(to_rgb=False)(sample), DecodeImg(to_rgb=False)(sample_mix) ]) sample = self.transforms(sample) return sample def __len__(self): return self.num_samples def set_epoch(self, epoch_id): self._epoch = epoch_id def cluster_yolo_anchor(self, num_anchors, image_size, cache=True, cache_path=None, iters=300, gen_iters=1000, thresh=.25): """ Cluster YOLO anchors. Reference: https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py Args: num_anchors (int): Number of clusters. image_size (list[int]|int): [h, w] or an int value that corresponds to the shape [image_size, image_size]. cache (bool, optional): Whether to use cache. Defaults to True. cache_path (str|None, optional): Path of cache directory. If None, use `dataset.data_dir`. Defaults to None. iters (int, optional): Iterations of k-means algorithm. Defaults to 300. gen_iters (int, optional): Iterations of genetic algorithm. Defaults to 1000. thresh (float, optional): Anchor scale threshold. Defaults to 0.25. """ if cache_path is None: cache_path = self.data_dir cluster = YOLOAnchorCluster( num_anchors=num_anchors, dataset=self, image_size=image_size, cache=cache, cache_path=cache_path, iters=iters, gen_iters=gen_iters, thresh=thresh) anchors = cluster() return anchors def add_negative_samples(self, image_dir, empty_ratio=1): """ Generate and add negative samples. Args: image_dir (str): Directory that contains images. empty_ratio (float|None, optional): Ratio of negative samples. If `empty_ratio` is smaller than 0 or not less than 1, keep all generated negative samples. Defaults to 1.0. """ import cv2 if not osp.isdir(image_dir): raise ValueError("{} is not a valid image directory.".format( image_dir)) if empty_ratio is not None: self.empty_ratio = empty_ratio image_list = os.listdir(image_dir) max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds())) neg_file_list = list() for image in image_list: if not is_pic(image): continue gt_bbox = np.zeros((0, 4), dtype=np.float32) gt_class = np.zeros((0, 1), dtype=np.int32) gt_score = np.zeros((0, 1), dtype=np.float32) is_crowd = np.zeros((0, 1), dtype=np.int32) difficult = np.zeros((0, 1), dtype=np.int32) max_img_id += 1 im_fname = osp.join(image_dir, image) img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED) im_h, im_w, im_c = img_data.shape im_info = { 'im_id': np.asarray([max_img_id]), 'image_shape': np.array( [im_h, im_w], dtype=np.int32) } label_info = { 'is_crowd': is_crowd, 'gt_class': gt_class, 'gt_bbox': gt_bbox, 'gt_score': gt_score, 'difficult': difficult } if 'gt_poly' in self.file_list[0]: label_info['gt_poly'] = [] neg_file_list.append({'image': im_fname, ** im_info, ** label_info}) if neg_file_list: self.allow_empty = True self.file_list += self._sample_empty(neg_file_list) logging.info( "{} negative samples added. Dataset contains {} positive samples and {} negative samples.". format( len(self.file_list) - self.num_samples, self.pos_num, len(self.file_list) - self.pos_num)) self.num_samples = len(self.file_list) def _sample_empty(self, neg_file_list): if 0. <= self.empty_ratio < 1.: import random total_num = len(self.file_list) neg_num = total_num - self.pos_num sample_num = min((total_num * self.empty_ratio - neg_num) // (1 - self.empty_ratio), len(neg_file_list)) return random.sample(neg_file_list, sample_num) else: return neg_file_list