# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import shapely.ops from shapely.geometry import Polygon, MultiPolygon, GeometryCollection import copy from sklearn.decomposition import PCA def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]): # Rescaling (min-max normalization) range_value = np.asarray( [1. / (max_value[i] - min_value[i]) for i in range(len(max_value))], dtype=np.float32) im = (im - np.asarray(min_value, dtype=np.float32)) * range_value # Standardization (Z-score Normalization) im -= mean im /= std return im def permute(im, to_bgr=False): im = np.swapaxes(im, 1, 2) im = np.swapaxes(im, 1, 0) if to_bgr: im = im[[2, 1, 0], :, :] return im def center_crop(im, crop_size=224): height, width = im.shape[:2] w_start = (width - crop_size) // 2 h_start = (height - crop_size) // 2 w_end = w_start + crop_size h_end = h_start + crop_size im = im[h_start:h_end, w_start:w_end, ...] return im def horizontal_flip(im): im = im[:, ::-1, ...] return im def vertical_flip(im): im = im[::-1, :, ...] return im def rgb2bgr(im): return im[:, :, ::-1] def is_poly(poly): assert isinstance(poly, (list, dict)), \ "Invalid poly type: {}".format(type(poly)) return isinstance(poly, list) def horizontal_flip_poly(poly, width): flipped_poly = np.array(poly) flipped_poly[0::2] = width - np.array(poly[0::2]) return flipped_poly.tolist() def horizontal_flip_rle(rle, height, width): import pycocotools.mask as mask_util if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[:, ::-1] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle def vertical_flip_poly(poly, height): flipped_poly = np.array(poly) flipped_poly[1::2] = height - np.array(poly[1::2]) return flipped_poly.tolist() def vertical_flip_rle(rle, height, width): import pycocotools.mask as mask_util if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[::-1, :] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle def crop_poly(segm, crop): xmin, ymin, xmax, ymax = crop crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin] crop_p = np.array(crop_coord).reshape(4, 2) crop_p = Polygon(crop_p) crop_segm = list() for poly in segm: poly = np.array(poly).reshape(len(poly) // 2, 2) polygon = Polygon(poly) if not polygon.is_valid: exterior = polygon.exterior multi_lines = exterior.intersection(exterior) polygons = shapely.ops.polygonize(multi_lines) polygon = MultiPolygon(polygons) multi_polygon = list() if isinstance(polygon, MultiPolygon): multi_polygon = copy.deepcopy(polygon) else: multi_polygon.append(copy.deepcopy(polygon)) for per_polygon in multi_polygon: inter = per_polygon.intersection(crop_p) if not inter: continue if isinstance(inter, (MultiPolygon, GeometryCollection)): for part in inter: if not isinstance(part, Polygon): continue part = np.squeeze( np.array(part.exterior.coords[:-1]).reshape(1, -1)) part[0::2] -= xmin part[1::2] -= ymin crop_segm.append(part.tolist()) elif isinstance(inter, Polygon): crop_poly = np.squeeze( np.array(inter.exterior.coords[:-1]).reshape(1, -1)) crop_poly[0::2] -= xmin crop_poly[1::2] -= ymin crop_segm.append(crop_poly.tolist()) else: continue return crop_segm def crop_rle(rle, crop, height, width): import pycocotools.mask as mask_util if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) mask = mask[crop[1]:crop[3], crop[0]:crop[2]] rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle def expand_poly(poly, x, y): expanded_poly = np.array(poly) expanded_poly[0::2] += x expanded_poly[1::2] += y return expanded_poly.tolist() def expand_rle(rle, x, y, height, width, h, w): import pycocotools.mask as mask_util if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, height, width) mask = mask_util.decode(rle) expanded_mask = np.full((h, w), 0).astype(mask.dtype) expanded_mask[y:y + height, x:x + width] = mask rle = mask_util.encode(np.array(expanded_mask, order='F', dtype=np.uint8)) return rle def resize_poly(poly, im_scale_x, im_scale_y): resized_poly = np.array(poly, dtype=np.float32) resized_poly[0::2] *= im_scale_x resized_poly[1::2] *= im_scale_y return resized_poly.tolist() def resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y, interp): import pycocotools.mask as mask_util if 'counts' in rle and type(rle['counts']) == list: rle = mask_util.frPyObjects(rle, im_h, im_w) mask = mask_util.decode(rle) mask = cv2.resize( mask, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp) rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) return rle def matching(im1, im2): """ Match two images, used change detection. (Just RGB) Args: im1 (np.ndarray): The image of time 1. im2 (np.ndarray): The image of time 2. Returns: np.ndarray: The image of time 1 after matched. np.ndarray: The image of time 2. """ orb = cv2.AKAZE_create() kp1, des1 = orb.detectAndCompute(im1, None) kp2, des2 = orb.detectAndCompute(im2, None) bf = cv2.BFMatcher() mathces = bf.knnMatch(des1, des2, k=2) good_matches = [] for m, n in mathces: if m.distance < 0.75 * n.distance: good_matches.append([m]) src_automatic_points = np.float32([kp1[m[0].queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) den_automatic_points = np.float32([kp2[m[0].trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) H, _ = cv2.findHomography(src_automatic_points, den_automatic_points, cv2.RANSAC, 5.0) im1_t = cv2.warpPerspective(im1, H, (im2.shape[1], im2.shape[0])) return im1_t, im2 def de_haze(im, gamma=False): """ Priori defogging of dark channel. (Just RGB) Args: im (np.ndarray): The image. gamma (bool, optional): Use gamma correction or not. Defaults to False. Returns: np.ndarray: The image after defogged. """ def guided_filter(I, p, r, eps): m_I = cv2.boxFilter(I, -1, (r, r)) m_p = cv2.boxFilter(p, -1, (r, r)) m_Ip = cv2.boxFilter(I * p, -1, (r, r)) cov_Ip = m_Ip - m_I * m_p m_II = cv2.boxFilter(I * I, -1, (r, r)) var_I = m_II - m_I * m_I a = cov_Ip / (var_I + eps) b = m_p - a * m_I m_a = cv2.boxFilter(a, -1, (r, r)) m_b = cv2.boxFilter(b, -1, (r, r)) return m_a * I + m_b def de_fog(im, r, w, maxatmo_mask, eps): # im is RGB and range[0, 1] atmo_mask = np.min(im, 2) dark_channel = cv2.erode(atmo_mask, np.ones((15, 15))) atmo_mask = guided_filter(atmo_mask, dark_channel, r, eps) bins = 2000 ht = np.histogram(atmo_mask, bins) d = np.cumsum(ht[0]) / float(atmo_mask.size) for lmax in range(bins - 1, 0, -1): if d[lmax] <= 0.999: break atmo_illum = np.mean(im, 2)[atmo_mask >= ht[1][lmax]].max() atmo_mask = np.minimum(atmo_mask * w, maxatmo_mask) return atmo_mask, atmo_illum if np.max(im) > 1: im = im / 255. result = np.zeros(im.shape) mask_img, atmo_illum = de_fog(im, r=81, w=0.95, maxatmo_mask=0.80, eps=1e-8) for k in range(3): result[:, :, k] = (im[:, :, k] - mask_img) / (1 - mask_img / atmo_illum) result = np.clip(result, 0, 1) if gamma: result = result ** (np.log(0.5) / np.log(result.mean())) return (result * 255).astype("uint8") def pca(im, dim=3, whiten=True): """ Dimensionality reduction of PCA. Args: im (np.ndarray): The image. dim (int, optional): Reserved dimensions. Defaults to 3. whiten (bool, optional): PCA whiten or not. Defaults to True. Returns: np.ndarray: The image after PCA. """ H, W, C = im.shape n_im = np.reshape(im, (-1, C)) pca = PCA(n_components=dim, whiten=whiten) im_pca = pca.fit_transform(n_im) result = np.reshape(im_pca, (H, W, dim)) result = np.clip(result, 0, 1) return (result * 255).astype("uint8")