# base on https://github.com/kongdebug/RCAN-Paddle import math import paddle import paddle.nn as nn from .builder import GENERATORS def default_conv(in_channels, out_channels, kernel_size, bias=True): weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform(), need_clip =True) return nn.Conv2D(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), weight_attr=weight_attr, bias_attr=bias) class MeanShift(nn.Conv2D): def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = paddle.to_tensor(rgb_std) self.weight.set_value(paddle.eye(3).reshape([3, 3, 1, 1])) self.weight.set_value(self.weight / (std.reshape([3, 1, 1, 1]))) mean = paddle.to_tensor(rgb_mean) self.bias.set_value(sign * rgb_range * mean / std) self.weight.trainable = False self.bias.trainable = False ## Channel Attention (CA) Layer class CALayer(nn.Layer): def __init__(self, channel, reduction=16): super(CALayer, self).__init__() # global average pooling: feature --> point self.avg_pool = nn.AdaptiveAvgPool2D(1) # feature channel downscale and upscale --> channel weight self.conv_du = nn.Sequential( nn.Conv2D( channel, channel // reduction, 1, padding=0, bias_attr=True), nn.ReLU(), nn.Conv2D( channel // reduction, channel, 1, padding=0, bias_attr=True), nn.Sigmoid()) def forward(self, x): y = self.avg_pool(x) y = self.conv_du(y) return x * y class RCAB(nn.Layer): def __init__(self, conv, n_feat, kernel_size, reduction=16, bias=True, bn=False, act=nn.ReLU(), res_scale=1): super(RCAB, self).__init__() modules_body = [] for i in range(2): modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias)) if bn: modules_body.append(nn.BatchNorm2D(n_feat)) if i == 0: modules_body.append(act) modules_body.append(CALayer(n_feat, reduction)) self.body = nn.Sequential(*modules_body) self.res_scale = res_scale def forward(self, x): res = self.body(x) res += x return res ## Residual Group (RG) class ResidualGroup(nn.Layer): def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, n_resblocks): super(ResidualGroup, self).__init__() modules_body = [] modules_body = [ RCAB( conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(), res_scale=1) \ for _ in range(n_resblocks)] modules_body.append(conv(n_feat, n_feat, kernel_size)) self.body = nn.Sequential(*modules_body) def forward(self, x): res = self.body(x) res += x return res class Upsampler(nn.Sequential): def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True): m = [] if (scale & (scale - 1)) == 0: # Is scale = 2^n? for _ in range(int(math.log(scale, 2))): m.append(conv(n_feats, 4 * n_feats, 3, bias)) m.append(nn.PixelShuffle(2)) if bn: m.append(nn.BatchNorm2D(n_feats)) if act == 'relu': m.append(nn.ReLU()) elif act == 'prelu': m.append(nn.PReLU(n_feats)) elif scale == 3: m.append(conv(n_feats, 9 * n_feats, 3, bias)) m.append(nn.PixelShuffle(3)) if bn: m.append(nn.BatchNorm2D(n_feats)) if act == 'relu': m.append(nn.ReLU()) elif act == 'prelu': m.append(nn.PReLU(n_feats)) else: raise NotImplementedError super(Upsampler, self).__init__(*m) @GENERATORS.register() class RCAN(nn.Layer): def __init__( self, scale, n_resgroups, n_resblocks, n_feats=64, n_colors=3, rgb_range=255, kernel_size=3, reduction=16, conv=default_conv, ): super(RCAN, self).__init__() self.scale = scale act = nn.ReLU() n_resgroups = n_resgroups n_resblocks = n_resblocks n_feats = n_feats kernel_size = kernel_size reduction = reduction scale = scale act = nn.ReLU() rgb_mean = (0.4488, 0.4371, 0.4040) rgb_std = (1.0, 1.0, 1.0) self.sub_mean = MeanShift(rgb_range, rgb_mean, rgb_std) # define head module modules_head = [conv(n_colors, n_feats, kernel_size)] # define body module modules_body = [ ResidualGroup( conv, n_feats, kernel_size, reduction, act=act, res_scale= 1, n_resblocks=n_resblocks) \ for _ in range(n_resgroups)] modules_body.append(conv(n_feats, n_feats, kernel_size)) # define tail module modules_tail = [ Upsampler( conv, scale, n_feats, act=False), conv(n_feats, n_colors, kernel_size) ] self.head = nn.Sequential(*modules_head) self.body = nn.Sequential(*modules_body) self.tail = nn.Sequential(*modules_tail) self.add_mean = MeanShift(rgb_range, rgb_mean, rgb_std, 1) def forward(self, x): x = self.sub_mean(x) x = self.head(x) res = self.body(x) res += x x = self.tail(res) x = self.add_mean(x) return x