# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ @File Description: # 统计json文件images信息,生成统计结果csv,同时生成图像shape、图像shape比例的二维分布图 python ./coco_tools/json_ImgSta.py \ --json_path=./annotations/instances_val2017.json \ --csv_path=./img_sta/images.csv \ --png_shape_path=./img_sta/images_shape.png \ --png_shapeRate_path=./img_sta/images_shapeRate.png """ import json import argparse import os.path import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def check_dir(check_path, show=True): if os.path.isdir(check_path): check_directory = check_path else: check_directory = os.path.dirname(check_path) if not os.path.exists(check_directory): os.makedirs(check_directory) if show: print('make dir:', check_directory) def js_img_sta(js_path, csv_path, png_shape_path, png_shapeRate_path, image_keyname): print('json read...\n') with open(js_path, 'r') as load_f: data = json.load(load_f) df_img = pd.DataFrame(data[image_keyname]) if png_shape_path is not None: check_dir(png_shape_path) sns.jointplot('height', 'width', data=df_img, kind='hex') plt.savefig(png_shape_path) plt.close() print('png save to', png_shape_path) if png_shapeRate_path is not None: check_dir(png_shapeRate_path) df_img['shape_rate'] = (df_img['width'] / df_img['height']).round(1) df_img['shape_rate'].value_counts().sort_index().plot( kind='bar', title='images shape rate') plt.savefig(png_shapeRate_path) plt.close() print('png save to', png_shapeRate_path) if csv_path is not None: check_dir(csv_path) df_img.to_csv(csv_path) print('csv save to', csv_path) def get_args(): parser = argparse.ArgumentParser( description='Json Images Infomation Statistic') # Parameters parser.add_argument( '--json_path', type=str, help='json path to statistic images information') parser.add_argument( '--csv_path', type=str, default=None, help='csv path to save statistic images information, default None, do not save' ) parser.add_argument( '--png_shape_path', type=str, default=None, help='png path to save statistic images shape information, default None, do not save' ) parser.add_argument( '--png_shapeRate_path', type=str, default=None, help='png path to save statistic images shape rate information, default None, do not save' ) parser.add_argument( '--image_keyname', type=str, default='images', help='image key name in json, default images') parser.add_argument( '-Args_show', '--Args_show', type=bool, default=True, help='Args_show(default: True), if True, show args info') args = parser.parse_args() if args.Args_show: print('Args'.center(100, '-')) for k, v in vars(args).items(): print('%s = %s' % (k, v)) print() return args if __name__ == '__main__': args = get_args() js_img_sta(args.json_path, args.csv_path, args.png_shape_path, args.png_shapeRate_path, args.image_keyname)