# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import cv2 from utils import Raster, raster2uint8, save_geotiff, time_it class MatchError(Exception): def __str__(self): return "Cannot match the two images." def _calcu_tf(im1, im2): orb = cv2.AKAZE_create() kp1, des1 = orb.detectAndCompute(im1, None) kp2, des2 = orb.detectAndCompute(im2, None) bf = cv2.BFMatcher() mathces = bf.knnMatch(des2, des1, k=2) good_matches = [] for m, n in mathces: if m.distance < 0.75 * n.distance: good_matches.append([m]) if len(good_matches) < 4: raise MatchError() src_automatic_points = np.float32([kp2[m[0].queryIdx].pt \ for m in good_matches]).reshape(-1, 1, 2) den_automatic_points = np.float32([kp1[m[0].trainIdx].pt \ for m in good_matches]).reshape(-1, 1, 2) H, _ = cv2.findHomography(src_automatic_points, den_automatic_points, cv2.RANSAC, 5.0) return H def _get_match_img(raster, bands): if len(bands) not in [1, 3]: raise ValueError("The lenght of bands must be 1 or 3.") band_array = [] for b in bands: band_i = raster.GetRasterBand(b).ReadAsArray() band_array.append(band_i) if len(band_array) == 1: ima = raster2uint8(band_array[0]) else: ima = raster2uint8(np.stack(band_array, axis=-1)) ima = cv2.cvtColor(ima, cv2.COLOR_RGB2GRAY) return ima @time_it def match(im1_path, im2_path, save_path, im1_bands=[1, 2, 3], im2_bands=[1, 2, 3]): im1_ras = Raster(im1_path) im2_ras = Raster(im2_path) im1 = _get_match_img(im1_ras._src_data, im1_bands) im2 = _get_match_img(im2_ras._src_data, im2_bands) H = _calcu_tf(im1, im2) im2_arr_t = cv2.warpPerspective(im2_ras.getArray(), H, (im1_ras.width, im1_ras.height)) save_geotiff(im2_arr_t, save_path, im1_ras.proj, im1_ras.geot, im1_ras.datatype) parser = argparse.ArgumentParser(description="input parameters") parser.add_argument('--im1_path', type=str, required=True, \ help="Path of time1 image (with geoinfo).") parser.add_argument('--im2_path', type=str, required=True, \ help="Path of time2 image.") parser.add_argument('--save_path', type=str, required=True, \ help="Path to save matching result.") parser.add_argument('--im1_bands', type=int, nargs="+", default=[1, 2, 3], \ help="Bands of im1 to be used for matching, RGB or monochrome. The default value is [1, 2, 3].") parser.add_argument('--im2_bands', type=int, nargs="+", default=[1, 2, 3], \ help="Bands of im2 to be used for matching, RGB or monochrome. The default value is [1, 2, 3].") if __name__ == "__main__": args = parser.parse_args() match(args.im1_path, args.im2_path, args.save_path, args.im1_bands, args.im2_bands)