# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import copy import os import os.path as osp import numpy as np import itertools from paddlers.models.ppdet.metrics.map_utils import draw_pr_curve from paddlers.models.ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res import paddlers.utils.logging as logging def get_infer_results(outs, catid, bias=0): """ Get result at the stage of inference. The output format is dictionary containing bbox or mask result. For example, bbox result is a list and each element contains image_id, category_id, bbox and score. """ if outs is None or len(outs) == 0: raise ValueError( 'The number of valid detection result if zero. Please use reasonable model and check input data.' ) im_id = outs['im_id'] infer_res = {} if 'bbox' in outs: if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6: infer_res['bbox'] = get_det_poly_res( outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) else: infer_res['bbox'] = get_det_res( outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) if 'mask' in outs: # mask post process infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'], outs['bbox_num'], im_id, catid) if 'segm' in outs: infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid) return infer_res def cocoapi_eval(anns, style, coco_gt=None, anno_file=None, max_dets=(100, 300, 1000), classwise=False): """ Args: anns (list): Evaluation result. style (str): COCOeval style. Choices are 'bbox', 'segm' and 'proposal'. coco_gt (str, optional): Whether to load COCOAPI through anno_file, eg: coco_gt = COCO(anno_file) anno_file (str, optional): COCO annotations file. Defaults to None. max_dets (tuple, optional): COCO evaluation maxDets. Defaults to (100, 300, 1000). classwise (bool, optional): Whether to calculate per-category statistics or not. Defaults to None. """ assert coco_gt is not None or anno_file is not None from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval if coco_gt is None: coco_gt = COCO(anno_file) logging.info("Start evaluate...") coco_dt = loadRes(coco_gt, anns) if style == 'proposal': coco_eval = COCOeval(coco_gt, coco_dt, 'bbox') coco_eval.params.useCats = 0 coco_eval.params.maxDets = list(max_dets) else: coco_eval = COCOeval(coco_gt, coco_dt, style) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() if classwise: # Compute per-category AP and PR curve try: from terminaltables import AsciiTable except Exception as e: logging.error( 'terminaltables not found, plaese install terminaltables. ' 'for example: `pip install terminaltables`.') raise e precisions = coco_eval.eval['precision'] cat_ids = coco_gt.getCatIds() # precision: (iou, recall, cls, area range, max dets) assert len(cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = coco_gt.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (str(nm["name"]), '{:0.3f}'.format(float(ap)))) pr_array = precisions[0, :, idx, 0, 2] recall_array = np.arange(0.0, 1.01, 0.01) draw_pr_curve( pr_array, recall_array, out_dir=style + '_pr_curve', file_name='{}_precision_recall_curve.jpg'.format(nm["name"])) num_columns = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest( *[results_flatten[i::num_columns] for i in range(num_columns)]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) logging.info('Per-category of {} AP: \n{}'.format(style, table.table)) logging.info("per-category PR curve has output to {} folder.".format( style + '_pr_curve')) # Flush coco evaluation result sys.stdout.flush() return coco_eval.stats def loadRes(coco_obj, anns): # This function has the same functionality as pycocotools.COCO.loadRes, # excepting that the input anns is list of results rather than a json file. # Refer to # https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305, # matplotlib.use() must be called *before* pylab, matplotlib.pyplot, # or matplotlib.backends is imported for the first time. import matplotlib matplotlib.use('Agg') from pycocotools.coco import COCO import pycocotools.mask as maskUtils import time res = COCO() res.dataset['images'] = [img for img in coco_obj.dataset['images']] tic = time.time() assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set( [ann['image_id'] for ann in anns]) res.dataset['images'] = [ img for img in res.dataset['images'] if img['id'] in imgIds ] for id, ann in enumerate(anns): ann['id'] = id + 1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[ 'categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2] * bb[3] ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[ 'categories']) for id, ann in enumerate(anns): # Now only supports compressed RLE format as segmentation results. ann['area'] = maskUtils.area(ann['segmentation']) if not 'bbox' in ann: ann['bbox'] = maskUtils.toBbox(ann['segmentation']) ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[ 'categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1 - x0) * (y1 - y0) ann['id'] = id + 1 ann['bbox'] = [x0, y0, x1 - x0, y1 - y0] res.dataset['annotations'] = anns res.createIndex() return res def makeplot(rs, ps, outDir, class_name, iou_type): """ 针对某个特定类别,绘制不同评估要求下的准确率和召回率。 绘制结果说明参考COCODataset官网给出分析工具说明https://cocodataset.org/#detection-eval。 Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py#L13 Args: rs (np.array): 在不同置信度阈值下计算得到的召回率。 ps (np.array): 在不同置信度阈值下计算得到的准确率。ps与rs相同位置下的数值为同一个置信度阈值 计算得到的准确率与召回率。 outDir (str): 图表保存的路径。 class_name (str): 类别名。 iou_type (str): iou计算方式,若为检测框,则设置为'bbox',若为像素级分割结果,则设置为'segm'。 """ import matplotlib.pyplot as plt cs = np.vstack([ np.ones((2, 3)), np.array([0.31, 0.51, 0.74]), np.array([0.75, 0.31, 0.30]), np.array([0.36, 0.90, 0.38]), np.array([0.50, 0.39, 0.64]), np.array([1, 0.6, 0]), ]) areaNames = ['allarea', 'small', 'medium', 'large'] types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN'] for i in range(len(areaNames)): area_ps = ps[..., i, 0] figure_title = iou_type + '-' + class_name + '-' + areaNames[i] aps = [ps_.mean() for ps_ in area_ps] ps_curve = [ ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps ] ps_curve.insert(0, np.zeros(ps_curve[0].shape)) fig = plt.figure() ax = plt.subplot(111) for k in range(len(types)): ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5) ax.fill_between( rs, ps_curve[k], ps_curve[k + 1], color=cs[k], label=str(f'[{aps[k]:.3f}]' + types[k]), ) plt.xlabel('recall') plt.ylabel('precision') plt.xlim(0, 1.0) plt.ylim(0, 1.0) plt.title(figure_title) plt.legend() # plt.show() fig.savefig(osp.join(outDir, f'{figure_title}.png')) plt.close(fig) def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type, areas=None): """ 针对某个特定类别,分析忽略亚类混淆和类别混淆时的准确率。 Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py#L174 Args: k (int): 待分析类别的序号。 cocoDt (pycocotols.coco.COCO): 按COCO类存放的预测结果。 cocoGt (pycocotols.coco.COCO): 按COCO类存放的真值。 catId (int): 待分析类别在数据集中的类别id。 iou_type (str): iou计算方式,若为检测框,则设置为'bbox',若为像素级分割结果,则设置为'segm'。 Returns: int: dict: 有关键字'ps_supercategory'和'ps_allcategory'。关键字'ps_supercategory'的键值是忽略亚类间 混淆时的准确率,关键字'ps_allcategory'的键值是忽略类别间混淆时的准确率。 """ # matplotlib.use() must be called *before* pylab, matplotlib.pyplot, # or matplotlib.backends is imported for the first time. import matplotlib matplotlib.use('Agg') from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval nm = cocoGt.loadCats(catId)[0] print(f'--------------analyzing {k + 1}-{nm["name"]}---------------') ps_ = {} dt = copy.deepcopy(cocoDt) nm = cocoGt.loadCats(catId)[0] imgIds = cocoGt.getImgIds() dt_anns = dt.dataset['annotations'] select_dt_anns = [] for ann in dt_anns: if ann['category_id'] == catId: select_dt_anns.append(ann) dt.dataset['annotations'] = select_dt_anns dt.createIndex() # Compute precision but ignore superclass confusion. gt = copy.deepcopy(cocoGt) child_catIds = gt.getCatIds(supNms=[nm['supercategory']]) for idx, ann in enumerate(gt.dataset['annotations']): if ann['category_id'] in child_catIds and ann['category_id'] != catId: gt.dataset['annotations'][idx]['ignore'] = 1 gt.dataset['annotations'][idx]['iscrowd'] = 1 gt.dataset['annotations'][idx]['category_id'] = catId cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) cocoEval.params.imgIds = imgIds cocoEval.params.maxDets = [100] cocoEval.params.iouThrs = [0.1] cocoEval.params.useCats = 1 if areas: cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], [areas[0], areas[1]], [areas[1], areas[2]]] cocoEval.evaluate() cocoEval.accumulate() ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :] ps_['ps_supercategory'] = ps_supercategory # compute precision but ignore any class confusion gt = copy.deepcopy(cocoGt) for idx, ann in enumerate(gt.dataset['annotations']): if ann['category_id'] != catId: gt.dataset['annotations'][idx]['ignore'] = 1 gt.dataset['annotations'][idx]['iscrowd'] = 1 gt.dataset['annotations'][idx]['category_id'] = catId cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) cocoEval.params.imgIds = imgIds cocoEval.params.maxDets = [100] cocoEval.params.iouThrs = [0.1] cocoEval.params.useCats = 1 if areas: cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], [areas[0], areas[1]], [areas[1], areas[2]]] cocoEval.evaluate() cocoEval.accumulate() ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :] ps_['ps_allcategory'] = ps_allcategory return k, ps_ def coco_error_analysis(eval_details_file=None, gt=None, pred_bbox=None, pred_mask=None, save_dir='./output'): """ 逐个分析模型预测错误的原因,并将分析结果以图表的形式展示。 分析结果说明参考COCODataset官网给出分析工具说明https://cocodataset.org/#detection-eval。 Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py Args: eval_details_file (str): 模型评估结果的保存路径,包含真值信息和预测结果。 gt (list): 数据集的真值信息。默认值为None。 pred_bbox (list): 模型在数据集上的预测框。默认值为None。 pred_mask (list): 模型在数据集上的预测mask。默认值为None。 save_dir (str): 可视化结果保存路径。默认值为'./output'。 Note: eval_details_file的优先级更高,只要eval_details_file不为None, 就会从eval_details_file提取真值信息和预测结果做分析。 当eval_details_file为None时,则用gt、pred_mask、pred_mask做分析。 """ import multiprocessing as mp # matplotlib.use() must be called *before* pylab, matplotlib.pyplot, # or matplotlib.backends is imported for the first time. import matplotlib matplotlib.use('Agg') from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval if eval_details_file is not None: import json with open(eval_details_file, 'r') as f: eval_details = json.load(f) pred_bbox = eval_details['bbox'] if 'mask' in eval_details: pred_mask = eval_details['mask'] gt = eval_details['gt'] if gt is None or pred_bbox is None: raise ValueError( "gt/pred_bbox/pred_mask is None now. Please set right eval_details_file or gt/pred_bbox/pred_mask." ) if pred_bbox is not None and len(pred_bbox) == 0: raise ValueError("There is no predicted bbox.") if pred_mask is not None and len(pred_mask) == 0: raise ValueError("There is no predicted mask.") def _analyze_results(cocoGt, cocoDt, res_type, out_dir): """ Refer to https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/coco_error_analysis.py#L235 """ directory = osp.dirname(osp.join(out_dir, '')) if not osp.exists(directory): logging.info('-------------create {}-----------------'.format( out_dir)) os.makedirs(directory) imgIds = cocoGt.getImgIds() res_out_dir = osp.join(out_dir, res_type, '') res_directory = os.path.dirname(res_out_dir) if not os.path.exists(res_directory): logging.info('-------------create {}-----------------'.format( res_out_dir)) os.makedirs(res_directory) iou_type = res_type cocoEval = COCOeval( copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type) cocoEval.params.imgIds = imgIds cocoEval.params.iouThrs = [.75, .5, .1] cocoEval.params.maxDets = [100] cocoEval.evaluate() cocoEval.accumulate() ps = cocoEval.eval['precision'] ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))]) catIds = cocoGt.getCatIds() recThrs = cocoEval.params.recThrs thread_num = mp.cpu_count() if mp.cpu_count() < 8 else 8 thread_pool = mp.pool.ThreadPool(thread_num) args = [(k, cocoDt, cocoGt, catId, iou_type) for k, catId in enumerate(catIds)] analyze_results = thread_pool.starmap(analyze_individual_category, args) for k, catId in enumerate(catIds): nm = cocoGt.loadCats(catId)[0] logging.info('--------------saving {}-{}---------------'.format( k + 1, nm['name'])) analyze_result = analyze_results[k] assert k == analyze_result[0], "" ps_supercategory = analyze_result[1]['ps_supercategory'] ps_allcategory = analyze_result[1]['ps_allcategory'] # Compute precision but ignore superclass confusion. ps[3, :, k, :, :] = ps_supercategory # Compute precision but ignore any class confusion. ps[4, :, k, :, :] = ps_allcategory # Fill in background and false negative errors and plot. ps[ps == -1] = 0 ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0 ps[6, :, k, :, :] = 1.0 makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type) makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type) coco_gt = COCO() coco_gt.dataset = gt coco_gt.createIndex() if pred_bbox is not None: coco_dt = loadRes(coco_gt, pred_bbox) _analyze_results(coco_gt, coco_dt, res_type='bbox', out_dir=save_dir) if pred_mask is not None: coco_dt = loadRes(coco_gt, pred_mask) _analyze_results(coco_gt, coco_dt, res_type='segm', out_dir=save_dir) logging.info("The analysis figures are saved in {}.".format(save_dir))