# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from enum import Enum import numpy as np import cv2 from .utils import * import sys class LandmarksType(Enum): """Enum class defining the type of landmarks to detect. ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face ``_2halfD`` - this points represent the projection of the 3D points into 3D ``_3D`` - detect the points ``(x,y,z)``` in a 3D space """ _2D = 1 _2halfD = 2 _3D = 3 class NetworkSize(Enum): # TINY = 1 # SMALL = 2 # MEDIUM = 3 LARGE = 4 def __new__(cls, value): member = object.__new__(cls) member._value_ = value return member def __int__(self): return self.value class FaceAlignment: def __init__(self, landmarks_type, network_size=NetworkSize.LARGE, flip_input=False, face_detector='sfd', verbose=False): self.flip_input = flip_input self.landmarks_type = landmarks_type self.verbose = verbose network_size = int(network_size) # Get the face detector face_detector_module = __import__( 'ppgan.faceutils.face_detection.detection.' + face_detector, globals(), locals(), [face_detector], 0) self.face_detector = face_detector_module.FaceDetector(verbose=verbose) def get_detections_for_batch(self, images): images = images[..., ::-1] detected_faces = self.face_detector.detect_from_batch(images.copy()) results = [] for i, d in enumerate(detected_faces): if len(d) == 0: results.append(None) continue d = d[0] d = np.clip(d, 0, None) x1, y1, x2, y2 = map(int, d[:4]) results.append((x1, y1, x2, y2)) return results def get_detections_for_image(self, images): images = images[..., ::-1] detected_faces = self.face_detector.detect_from_batch(images.copy()) results = [] for i, d in enumerate(detected_faces[0]): if len(d) == 0: results.append(None) continue d = np.clip(d, 0, None) x1, y1, x2, y2 = map(int, d[:-1]) results.append((x1, y1, x2, y2)) return results