# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import warnings import cv2 import numpy as np from skimage import morphology from scipy import ndimage, optimize with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) from sklearn import metrics from sklearn.cluster import KMeans from .utils import prepro_mask, calc_distance def cut_road_connection(mask: np.ndarray, line_width: int=6) -> np.ndarray: """ Connecting cut road lines. The original article refers to Wang B, Chen Z, et al. "Road extraction of high-resolution satellite remote sensing images in U-Net network with consideration of connectivity." (http://hgs.publish.founderss.cn/thesisDetails?columnId=4759509). This algorithm has no public code. The implementation procedure refers to original article, and it is not fully consistent with the article: 1. The way to determine the optimal number of clusters k used in k-means clustering is not described in the original article. In this implementation, we use the k that reports the highest silhouette score. 2. We unmark the breakpoints if the angle between the two road extensions is less than 90°. Args: mask (np.ndarray): Mask of road. line_width (int, optional): Width of the line used for patching. . Default is 6. Returns: np.ndarray: Mask of road after connecting cut road lines. """ mask = prepro_mask(mask) skeleton = morphology.skeletonize(mask).astype("uint8") break_points = _find_breakpoint(skeleton) labels = _k_means(break_points) match_points = _get_match_points(break_points, labels) res = _draw_curve(mask, skeleton, match_points, line_width) return res def _find_breakpoint(skeleton): kernel_3x3 = np.ones((3, 3), dtype="uint8") k3 = ndimage.convolve(skeleton, kernel_3x3) point_map = np.zeros_like(k3) point_map[k3 == 2] = 1 point_map *= skeleton * 255 # boundary filtering filter_w = 5 cropped = point_map[filter_w:-filter_w, filter_w:-filter_w] padded = np.pad(cropped, (filter_w, filter_w), mode="constant") breakpoints = np.column_stack(np.where(padded == 255)) return breakpoints def _k_means(data): silhouette_int = -1 # threshold labels = None for k in range(2, data.shape[0]): kms = KMeans(k, random_state=66) labels_tmp = kms.fit_predict(data) # train silhouette = metrics.silhouette_score(data, labels_tmp) if silhouette > silhouette_int: # better silhouette_int = silhouette labels = labels_tmp return labels def _get_match_points(break_points, labels): match_points = {} for point, lab in zip(break_points, labels): if lab in match_points.keys(): match_points[lab].append(point) else: match_points[lab] = [point] return match_points def _draw_curve(mask, skeleton, match_points, line_width): result = mask * 255 for v in match_points.values(): p_num = len(v) if p_num == 2: points_list = _curve_backtracking(v, skeleton) if points_list is not None: result = _broken_wire_repair(result, points_list, line_width) elif p_num == 3: sim_v = list(itertools.combinations(v, 2)) min_di = 1e6 for vij in sim_v: di = calc_distance(vij[0][np.newaxis], vij[1][np.newaxis]) if di < min_di: vv = vij min_di = di points_list = _curve_backtracking(vv, skeleton) if points_list is not None: result = _broken_wire_repair(result, points_list, line_width) return result def _curve_backtracking(add_lines, skeleton): points_list = [] p1 = add_lines[0] p2 = add_lines[1] bpk1, ps1 = _calc_angle_by_road(p1, skeleton) bpk2, ps2 = _calc_angle_by_road(p2, skeleton) if _check_angle(bpk1, bpk2): points_list.append(( np.array( ps1, dtype="int64"), add_lines[0], add_lines[1], np.array( ps2, dtype="int64"), )) return points_list else: return None def _broken_wire_repair(mask, points_list, line_width): d_mask = mask.copy() for points in points_list: nx, ny = _line_cubic(points) for i in range(len(nx) - 1): loc_p1 = (int(ny[i]), int(nx[i])) loc_p2 = (int(ny[i + 1]), int(nx[i + 1])) cv2.line(d_mask, loc_p1, loc_p2, [255], line_width) return d_mask def _calc_angle_by_road(p, skeleton, num_circle=10): def _not_in(p1, ps): for p in ps: if p1[0] == p[0] and p1[1] == p[1]: return False return True h, w = skeleton.shape tmp_p = p.tolist() if isinstance(p, np.ndarray) else p tmp_p = [int(tmp_p[0]), int(tmp_p[1])] ps = [] ps.append(tmp_p) for _ in range(num_circle): t_x = 0 if tmp_p[0] - 1 < 0 else tmp_p[0] - 1 t_y = 0 if tmp_p[1] - 1 < 0 else tmp_p[1] - 1 b_x = w if tmp_p[0] + 1 >= w else tmp_p[0] + 1 b_y = h if tmp_p[1] + 1 >= h else tmp_p[1] + 1 if int(np.sum(skeleton[t_x:b_x + 1, t_y:b_y + 1])) <= 3: for i in range(t_x, b_x + 1): for j in range(t_y, b_y + 1): if skeleton[i, j] == 1: pp = [int(i), int(j)] if _not_in(pp, ps): tmp_p = pp ps.append(tmp_p) # calc angle theta = _angle_regression(ps) dx, dy = np.cos(theta), np.sin(theta) # calc direction start = ps[-1] end = ps[0] if end[1] < start[1] or (end[1] == start[1] and end[0] < start[0]): dx *= -1 dy *= -1 return [dx, dy], start def _angle_regression(datas): def _linear(x: float, k: float, b: float) -> float: return k * x + b xs = [] ys = [] for data in datas: xs.append(data[0]) ys.append(data[1]) xs_arr = np.array(xs) ys_arr = np.array(ys) # horizontal if len(np.unique(xs_arr)) == 1: theta = np.pi / 2 # vertical elif len(np.unique(ys_arr)) == 1: theta = 0 # cross calc else: k1, b1 = optimize.curve_fit(_linear, xs_arr, ys_arr)[0] k2, b2 = optimize.curve_fit(_linear, ys_arr, xs_arr)[0] err1 = 0 err2 = 0 for x, y in zip(xs_arr, ys_arr): err1 += abs(_linear(x, k1, b1) - y) / np.sqrt(k1**2 + 1) err2 += abs(_linear(y, k2, b2) - x) / np.sqrt(k2**2 + 1) if err1 <= err2: theta = (np.arctan(k1) + 2 * np.pi) % (2 * np.pi) else: theta = (np.pi / 2.0 - np.arctan(k2) + 2 * np.pi) % (2 * np.pi) # [0, 180) theta = theta * 180 / np.pi + 90 while theta >= 180: theta -= 180 theta -= 90 if theta < 0: theta += 180 return theta * np.pi / 180 def _cubic(x, y): def _func(x, a, b, c, d): return a * x**3 + b * x**2 + c * x + d arr_x = np.array(x).reshape((4, )) arr_y = np.array(y).reshape((4, )) popt1 = np.polyfit(arr_x, arr_y, 3) popt2 = np.polyfit(arr_y, arr_x, 3) x_min = np.min(arr_x) x_max = np.max(arr_x) y_min = np.min(arr_y) y_max = np.max(arr_y) nx = np.arange(x_min, x_max + 1, 1) y_estimate = [_func(i, popt1[0], popt1[1], popt1[2], popt1[3]) for i in nx] ny = np.arange(y_min, y_max + 1, 1) x_estimate = [_func(i, popt2[0], popt2[1], popt2[2], popt2[3]) for i in ny] if np.max(y_estimate) - np.min(y_estimate) <= np.max(x_estimate) - np.min( x_estimate): return nx, y_estimate else: return x_estimate, ny def _line_cubic(points): xs = [] ys = [] for p in points: x, y = p xs.append(x) ys.append(y) nx, ny = _cubic(xs, ys) return nx, ny def _get_theta(dy, dx): theta = np.arctan2(dy, dx) * 180 / np.pi if theta < 0.0: theta = 360.0 - abs(theta) return float(theta) def _check_angle(bpk1, bpk2, ang_threshold=90): af1 = _get_theta(bpk1[0], bpk1[1]) af2 = _get_theta(bpk2[0], bpk2[1]) ang_diff = abs(af1 - af2) if ang_diff > 180: ang_diff = 360 - ang_diff if ang_diff > ang_threshold: return True else: return False