import paddlers as pdrs from paddlers import transforms as T # 定义训练和验证时的transforms train_transforms = T.Compose([ T.SelectBand([5, 10, 15, 20, 25]), # for tet T.Resize(target_size=224), T.RandomHorizontalFlip(), T.Normalize( mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]), ]) eval_transforms = T.Compose([ T.SelectBand([5, 10, 15, 20, 25]), T.Resize(target_size=224), T.Normalize( mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]), ]) # 定义训练和验证所用的数据集 train_dataset = pdrs.datasets.ClasDataset( data_dir='tutorials/train/classification/DataSet', file_list='tutorials/train/classification/DataSet/train_list.txt', label_list='tutorials/train/classification/DataSet/label_list.txt', transforms=train_transforms, num_workers=0, shuffle=True) eval_dataset = pdrs.datasets.ClasDataset( data_dir='tutorials/train/classification/DataSet', file_list='tutorials/train/classification/DataSet/val_list.txt', label_list='tutorials/train/classification/DataSet/label_list.txt', transforms=eval_transforms, num_workers=0, shuffle=False) # 初始化模型 num_classes = len(train_dataset.labels) model = pdrs.tasks.CondenseNetV2_b(in_channels=5, num_classes=num_classes) # 进行训练 model.train( num_epochs=100, pretrain_weights=None, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=3e-4, save_dir='output/condensenetv2_b')