# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path as osp import numpy as np import argparse from sklearn.decomposition import PCA from joblib import dump from utils import Raster, save_geotiff, time_it @time_it def pca_train(img_path, save_dir="output", dim=3): raster = Raster(img_path) im = raster.getArray() n_im = np.reshape(im, (-1, raster.bands)) pca = PCA(n_components=dim, whiten=True) pca_model = pca.fit(n_im) if not osp.exists(save_dir): os.makedirs(save_dir) name = osp.splitext(osp.normpath(img_path).split(os.sep)[-1])[0] model_save_path = osp.join(save_dir, (name + "_pca.joblib")) image_save_path = osp.join(save_dir, (name + "_pca.tif")) dump(pca_model, model_save_path) # Save model output = pca_model.transform(n_im).reshape( (raster.height, raster.width, -1)) save_geotiff(output, image_save_path, raster.proj, raster.geot) # Save tiff print("The output image and the PCA model are saved in {}.".format( save_dir)) parser = argparse.ArgumentParser() parser.add_argument("--im_path", type=str, required=True, \ help="Path of HSIs image.") parser.add_argument("--save_dir", type=str, default="output", \ help="Directory to save PCA params(*.joblib). Default: output.") parser.add_argument("--dim", type=int, default=3, \ help="Dimension to reduce to. Default: 3.") if __name__ == "__main__": args = parser.parse_args() pca_train(args.im_path, args.save_dir, args.dim)