# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import copy import numpy as np import paddlers.transforms as T from testing_utils import CpuCommonTest from data import build_input_from_file __all__ = ['TestTransform', 'TestCompose', 'TestArrange'] WHITE_LIST = [] def _add_op_tests(cls): """ Automatically patch testing functions for transform operators. """ for op_name in T.operators.__all__: op_class = getattr(T.operators, op_name) if isinstance(op_class, type) and issubclass(op_class, T.operators.Transform): if op_class is T.DecodeImg or op_class in WHITE_LIST or op_name in WHITE_LIST: continue attr_name = 'test_' + op_name if hasattr(cls, attr_name): continue # If the operator cannot be initialized with default parameters, skip it. for key, param in inspect.signature( op_class.__init__).parameters.items(): if key == 'self': continue if param.default is param.empty: break else: filter_ = OP2FILTER.get(op_name, None) setattr( cls, attr_name, make_test_func( op_class, filter_=filter_)) return cls def make_test_func(op_class, *args, in_hook=None, out_hook=None, filter_=None, **kwargs): def _test_func(self): op = op_class(*args, **kwargs) decoder = T.DecodeImg() inputs = map(decoder, copy.deepcopy(self.inputs)) for i, input_ in enumerate(inputs): if filter_ is not None: input_ = filter_(input_) with self.subTest(i=i): for sample in input_: if in_hook: sample = in_hook(sample) sample = op(sample) if out_hook: sample = out_hook(sample) return _test_func class _InputFilter(object): def __init__(self, conds): self.conds = conds def __call__(self, samples): for sample in samples: for cond in self.conds: if cond(sample): yield sample def __or__(self, filter): return _InputFilter(self.conds + filter.conds) def __and__(self, filter): return _InputFilter( [cond for cond in self.conds if cond in filter.conds]) def get_sample(self, input): return input[0] def _is_optical(sample): return sample['image'].shape[2] == 3 def _is_sar(sample): return sample['image'].shape[2] == 1 def _is_multispectral(sample): return sample['image'].shape[2] > 3 def _is_mt(sample): return 'image2' in sample def _is_seg(sample): return 'mask' in sample and 'image2' not in sample def _is_det(sample): return 'gt_bbox' in sample or 'gt_poly' in sample def _is_clas(sample): return 'label' in sample _filter_only_optical = _InputFilter([_is_optical]) _filter_only_sar = _InputFilter([_is_sar]) _filter_only_multispectral = _InputFilter([_is_multispectral]) _filter_no_multispectral = _filter_only_optical | _filter_only_sar _filter_no_sar = _filter_only_optical | _filter_only_multispectral _filter_no_optical = _filter_only_sar | _filter_only_multispectral _filter_only_mt = _InputFilter([_is_mt]) _filter_no_det = _InputFilter([_is_seg, _is_clas, _is_mt]) OP2FILTER = { 'RandomSwap': _filter_only_mt, 'SelectBand': _filter_no_sar, 'Dehaze': _filter_only_optical, 'Normalize': _filter_only_optical, 'RandomDistort': _filter_only_optical } @_add_op_tests class TestTransform(CpuCommonTest): def setUp(self): self.inputs = [ build_input_from_file( "data/ssst/test_optical_clas.txt", prefix="./data/ssst"), build_input_from_file( "data/ssst/test_sar_clas.txt", prefix="./data/ssst"), build_input_from_file( "data/ssst/test_multispectral_clas.txt", prefix="./data/ssst"), build_input_from_file( "data/ssst/test_optical_seg.txt", prefix="./data/ssst"), build_input_from_file( "data/ssst/test_sar_seg.txt", prefix="./data/ssst"), build_input_from_file( "data/ssst/test_multispectral_seg.txt", prefix="./data/ssst"), build_input_from_file( "data/ssst/test_optical_det.txt", prefix="./data/ssst", label_list="data/ssst/labels_det.txt"), build_input_from_file( "data/ssst/test_sar_det.txt", prefix="./data/ssst", label_list="data/ssst/labels_det.txt"), build_input_from_file( "data/ssst/test_multispectral_det.txt", prefix="./data/ssst", label_list="data/ssst/labels_det.txt"), build_input_from_file( "data/ssst/test_det_coco.txt", prefix="./data/ssst"), build_input_from_file( "data/ssmt/test_mixed_binary.txt", prefix="./data/ssmt"), build_input_from_file( "data/ssmt/test_mixed_multiclass.txt", prefix="./data/ssmt"), build_input_from_file( "data/ssmt/test_mixed_multitask.txt", prefix="./data/ssmt") ] # yapf: disable def test_DecodeImg(self): decoder = T.DecodeImg(to_rgb=True) for i, input in enumerate(self.inputs): with self.subTest(i=i): for sample in input: sample = decoder(sample) # Check type self.assertIsInstance(sample['image'], np.ndarray) if 'mask' in sample: self.assertIsInstance(sample['mask'], np.ndarray) if 'aux_masks' in sample: for aux_mask in sample['aux_masks']: self.assertIsInstance(aux_mask, np.ndarray) # TODO: Check dtype def test_Resize(self): TARGET_SIZE = (128, 128) def _in_hook(sample): self.image_shape = sample['image'].shape if 'mask' in sample: self.mask_shape = sample['mask'].shape self.mask_values = set(sample['mask'].ravel()) if 'aux_masks' in sample: self.aux_mask_shapes = [ aux_mask.shape for aux_mask in sample['aux_masks'] ] self.aux_mask_values = [ set(aux_mask.ravel()) for aux_mask in sample['aux_masks'] ] return sample def _out_hook_not_keep_ratio(sample): self.check_output_equal(sample['image'].shape[:2], TARGET_SIZE) if 'image2' in sample: self.check_output_equal(sample['image2'].shape[:2], TARGET_SIZE) if 'mask' in sample: self.check_output_equal(sample['mask'].shape[:2], TARGET_SIZE) self.assertLessEqual( set(sample['mask'].ravel()), self.mask_values) if 'aux_masks' in sample: for aux_mask in sample['aux_masks']: self.check_output_equal(aux_mask.shape[:2], TARGET_SIZE) for aux_mask, amv in zip(sample['aux_masks'], self.aux_mask_values): self.assertLessEqual(set(aux_mask.ravel()), amv) # TODO: Test gt_bbox and gt_poly return sample def _out_hook_keep_ratio(sample): def __check_ratio(shape1, shape2): self.check_output_equal(shape1[0] / shape1[1], shape2[0] / shape2[1]) __check_ratio(sample['image'].shape, self.image_shape) if 'image2' in sample: __check_ratio(sample['image2'].shape, self.image_shape) if 'mask' in sample: __check_ratio(sample['mask'].shape, self.mask_shape) if 'aux_masks' in sample: for aux_mask, ori_aux_mask_shape in zip(sample['aux_masks'], self.aux_mask_shapes): __check_ratio(aux_mask.shape, ori_aux_mask_shape) # TODO: Test gt_bbox and gt_poly return sample test_func_not_keep_ratio = make_test_func( T.Resize, in_hook=_in_hook, out_hook=_out_hook_not_keep_ratio, target_size=TARGET_SIZE, keep_ratio=False) test_func_not_keep_ratio(self) test_func_keep_ratio = make_test_func( T.Resize, in_hook=_in_hook, out_hook=_out_hook_keep_ratio, target_size=TARGET_SIZE, keep_ratio=True) test_func_keep_ratio(self) def test_RandomFlipOrRotate(self): def _in_hook(sample): if 'image2' in sample: self.im_diff = ( sample['image'] - sample['image2']).astype('float64') elif 'mask' in sample: self.im_diff = ( sample['image'][..., 0] - sample['mask']).astype('float64') return sample def _out_hook(sample): im_diff = None if 'image2' in sample: im_diff = (sample['image'] - sample['image2']).astype('float64') elif 'mask' in sample: im_diff = ( sample['image'][..., 0] - sample['mask']).astype('float64') if im_diff is not None: self.check_output_equal(im_diff.max(), self.im_diff.max()) self.check_output_equal(im_diff.min(), self.im_diff.min()) return sample test_func = make_test_func( T.RandomFlipOrRotate, in_hook=_in_hook, out_hook=_out_hook, filter_=_filter_no_det) test_func(self) class TestCompose(CpuCommonTest): pass class TestArrange(CpuCommonTest): pass