# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math def calc_distance(p1: np.ndarray, p2: np.ndarray) -> float: return float(np.sqrt(np.sum(np.power((p1[0] - p2[0]), 2)))) def calc_angle(p1: np.ndarray, vertex: np.ndarray, p2: np.ndarray) -> float: x1, y1 = p1[0] xv, yv = vertex[0] x2, y2 = p2[0] a = ((xv - x2) * (xv - x2) + (yv - y2) * (yv - y2))**0.5 b = ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))**0.5 c = ((x1 - xv) * (x1 - xv) + (y1 - yv) * (y1 - yv))**0.5 return math.degrees(math.acos((b**2 - a**2 - c**2) / (-2 * a * c))) def calc_azimuth(p1: np.ndarray, p2: np.ndarray) -> float: x1, y1 = p1[0] x2, y2 = p2[0] if y1 == y2: return 0.0 if x1 == x2: return 90.0 elif x1 < x2: if y1 < y2: ang = math.atan((y2 - y1) / (x2 - x1)) return math.degrees(ang) else: ang = math.atan((y1 - y2) / (x2 - x1)) return 180 - math.degrees(ang) else: # x1 > x2 if y1 < y2: ang = math.atan((y2 - y1) / (x1 - x2)) return 180 - math.degrees(ang) else: ang = math.atan((y1 - y2) / (x1 - x2)) return math.degrees(ang) def rotation(point: np.ndarray, center: np.ndarray, angle: float) -> np.ndarray: if angle == 0: return point x, y = point[0] cx, cy = center[0] radian = math.radians(abs(angle)) if angle > 0: # clockwise rx = (x - cx) * math.cos(radian) - (y - cy) * math.sin(radian) + cx ry = (x - cx) * math.sin(radian) + (y - cy) * math.cos(radian) + cy else: rx = (x - cx) * math.cos(radian) + (y - cy) * math.sin(radian) + cx ry = (y - cy) * math.cos(radian) - (x - cx) * math.sin(radian) + cy return np.array([[rx, ry]]) def line(p1, p2): A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0] * p2[1] - p2[0] * p1[1]) return A, B, -C def intersection(L1, L2): D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return np.array([[x, y]]) else: return None def calc_distance_between_lines(L1, L2): eps = 1e-16 A1, _, C1 = L1 A2, B2, C2 = L2 new_C1 = C1 / (A1 + eps) new_A2 = 1 new_B2 = B2 / (A2 + eps) new_C2 = C2 / (A2 + eps) dist = (np.abs(new_C1 - new_C2)) / ( np.sqrt(new_A2 * new_A2 + new_B2 * new_B2) + eps) return dist def calc_project_in_line(point, line_point1, line_point2): eps = 1e-16 m, n = point x1, y1 = line_point1 x2, y2 = line_point2 F = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) x = (m * (x2 - x1) * (x2 - x1) + n * (y2 - y1) * (x2 - x1) + (x1 * y2 - x2 * y1) * (y2 - y1)) / (F + eps) y = (m * (x2 - x1) * (y2 - y1) + n * (y2 - y1) * (y2 - y1) + (x2 * y1 - x1 * y2) * (x2 - x1)) / (F + eps) return np.array([[x, y]])